Advertisement

Biological Trace Element Research

, Volume 119, Issue 3, pp 242–254 | Cite as

Selenium and Mercury in Pelagic Fish in the Central North Pacific Near Hawaii

  • J. John Kaneko
  • Nicholas V. C. Ralston
Article

Abstract

Protective effects of selenium against mercury toxicity have been demonstrated in all animal models evaluated. As interactions between selenium and mercury and their molar ratios in seafood are essential factors in evaluating risks associated with dietary mercury exposure, considering mercury content alone is inadequate. In this study, the absolute and molar concentrations of mercury and selenium were determined in edible portions from 420 individual fish representing 15 species of pelagic fish collected from the central North Pacific Ocean near Hawaii. Selenium was in molar excess of mercury in almost all fish species evaluated. The rank order of mean Se/Hg molar ratios was striped marlin (17.6) > yellowfin tuna (14.1) > mahimahi (13.1) > skipjack tuna (12.8) > spearfish (11.4) > wahoo (10.8) > sickle pomfret (6.7) > albacore tuna (5.3) > bigeye tuna (5.2) > blue marlin (4.1) > escolar (2.4) > opah (2.3) > thresher shark (1.5) > swordfish (1.2) > mako shark (0.5). With a Se/Hg molar ratio of less than 1, mako shark was the only fish containing a net molar excess of mercury. A selenium health benefit value based on the absolute amounts and relative proportions of selenium and mercury in seafood is proposed as a more comprehensive seafood safety criterion.

Keywords

Mercury Methylmercury Selenium Fish Seafood Environmental risk assessment Seafood safety 

Notes

Acknowledgments

The authors thank the Hawaii Longline Association and the management of the Honolulu Fish Auction operated by the United Fishing Agency in Honolulu, Hawaii, for their support and cooperation in obtaining fish samples. This study was supported by NOAA Award No. NA05NMF4521112 to PacMar, Honolulu, Hawaii.

References

  1. 1.
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. CRC Crit Rev Toxicol 36(8):609–662CrossRefGoogle Scholar
  2. 2.
    Jacobs G (1977) Total and organically bound mercury content in fishes from German fishing grounds. Z Lebensm Unters Forsch 164(2):71–76PubMedCrossRefGoogle Scholar
  3. 3.
    Hall RA, Zook EG, Meaburn GM (1978) National Marine Fisheries Service Survey of Trace Elements in the Fishery Resource. NOAA Technical Report NMFS SSRF-721. US Dept of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceGoogle Scholar
  4. 4.
    Julshamn K, Anderson A, Ringdal O, Morkore J (1987) Trace elements intake in the Faroe Islands. I. Element levels in edible parts of pilot whales (Globicephalus meleanus). Sci Total Environ 65:53–62PubMedCrossRefGoogle Scholar
  5. 5.
    National Research Council (2000) Toxicological effects of methylmercury, National Academy Press, Washington, DCGoogle Scholar
  6. 6.
    Cabanero AI, Carvalho C, Madrid Y, Batoreu C, Camara C (2005) Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. Biol Trace Elem Res 103(1):17–35PubMedCrossRefGoogle Scholar
  7. 7.
    Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2006) Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. Sci Total Environ 366(2–3):688–700PubMedGoogle Scholar
  8. 8.
    Daniels JL, Longnecker MP, Rowland AS, Golding J (2004) Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 15:394–402PubMedCrossRefGoogle Scholar
  9. 9.
    Rasmussen RS, Nettleton J, Morrissey MT (2005) A review of mercury in seafood: special focus on tuna. J Aqua Food Prod Tech 14(4):71–100CrossRefGoogle Scholar
  10. 10.
    Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health evaluating the risks and the benefits. JAMA 296(15):1885–1899PubMedCrossRefGoogle Scholar
  11. 11.
    Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369:578–585PubMedCrossRefGoogle Scholar
  12. 12.
    Institute of Medicine (2007) Seafood choices: balancing the benefits and risks. In: Nesheim MC, Yaktine AL (eds) National Academies Press, Washington, DCGoogle Scholar
  13. 13.
    Harada Y (1968) Congenital (or fetal) Minamata disease. In Study Group of Minamata Disease. Kumamoto University, Kumamoto, pp 93–117Google Scholar
  14. 14.
    Grandjean P, Weihe P, Joergensen PJ, Clarkson T, Cernichiari E, Videroe T (1992) Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch Environ Health 47(3):185–195PubMedCrossRefGoogle Scholar
  15. 15.
    Grandjean P, Weihe P, White RF, Debes F, Araki S, Murata K (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428PubMedCrossRefGoogle Scholar
  16. 16.
    Grandjean P, Weihe P, White RF, Debes F (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 77:165–172PubMedCrossRefGoogle Scholar
  17. 17.
    Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson TW (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles child development study. J Am Med Assoc 280(8):701–707CrossRefGoogle Scholar
  18. 18.
    Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106(3):841–847PubMedCrossRefGoogle Scholar
  19. 19.
    Parizek J, Ostadalova I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experiential 23(2):142–143CrossRefGoogle Scholar
  20. 20.
    Iwata H, Okamoto H, Ohsawa Y (1973) Effect of selenium on methylmercury poisoning. Res Comm Chem Path Pharm 5:673–680Google Scholar
  21. 21.
    Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T, Konno H, Ochiai S, Yamada H, Shimamura Y, Mizoguchi I, Yagyu H (1976) Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication. Environ Res 12:49–58PubMedCrossRefGoogle Scholar
  22. 22.
    El-Begearmi MM, Sunde ML, Ganther HE (1977) A mutual protective effect of mercury and selenium in Japanese quail. Poultry Sci 56(1):313–322Google Scholar
  23. 23.
    Beijer K, Jernelov A (1978) Ecological aspects of mercury–selenium interaction in the marine environment. Environ Health Perspect 25:43–45PubMedCrossRefGoogle Scholar
  24. 24.
    Sugiura Y, Tamai Y, Tanaka H (1978) Selenium Protection against mercury toxicity: high binding affinity of methylmercury by selenium containing ligands in comparison with sulfur containing ligands. Bioinorg Chem 9:167–180PubMedCrossRefGoogle Scholar
  25. 25.
    El-Begearmi MM, Ganther HE, Sunde ML (1982) Dietary interaction between methylmercury, selenium, arsenic, and sulfur amino acids in Japanese quail. Poultry Sci 61(2):272–279Google Scholar
  26. 26.
    Imura N (1986) The role of micronutrient, selenium, in the manifestation of toxicity of heavy metals. Dev Toxicol Environ Sci 12:115–123PubMedGoogle Scholar
  27. 27.
    Whanger PD (1992) Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. J Trace Elem Electrolytes-Health Dis 6(4):209–221PubMedGoogle Scholar
  28. 28.
    Suzuki KT (1997) Equimolar Hg–Se complex binds to selenoprotein P. Biochem Biophys Res Commun 231(1):7–11PubMedCrossRefGoogle Scholar
  29. 29.
    Watanabe C, Yin K, Kasanuma Y, Satoh H (1999) In utero exposure to methylmercury and selenium deficiency converge on the neurobehavioral outcome in mice. Neurotoxicol Teratol 21(1):83–88PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe C (2001) Selenium deficiency and brain functions: the significance for methylmercury toxicity. Nippon Eiseigaku Zasshi 55(4):581–589PubMedGoogle Scholar
  31. 31.
    Ralston NVC, Blackwell JL III, Raymond LJ (2007) Dietary selenium-dependent protection against methylmercury toxicity, Biol Trace Elem Res (this issue)Google Scholar
  32. 32.
    Ganther HE, Goudie C, Sunde ML, Kopecky MJ, Wagner P, Oh SH, Hoekstra WG (1972) Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science 175:1122PubMedCrossRefGoogle Scholar
  33. 33.
    Stillings BR, Lagally H, Bauersfield P, Soares J (1974) Effect of cystine, selenium, and fish protein on the toxicity and metabolism of methylmercury in rats. Toxicol Appl Pharmacol 30:243–254CrossRefGoogle Scholar
  34. 34.
    Freidman MA, Eaton LR, Carter WH (1978) Protective effects of freeze-dried swordfish on methylmercury content. J Environ Contam Toxicol 19:436–443CrossRefGoogle Scholar
  35. 35.
    Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T, Minowa K, Shimamura Y, Mizoguchi I, Inaba Y, Takizawa Y, Kawanishi Y (1980) The protective potency of marine animal meat against the neurotoxicity of methylmercury: its relationship with the organ distribution of mercury and selenium in the rat. Food Cosmet Toxicol 18(2):139–145PubMedCrossRefGoogle Scholar
  36. 36.
    Culvin-Aralar LA, Furness RW (1991) Mercury and selenium interaction: a review. Ecotoxicol Environ Saf 21:348–364CrossRefGoogle Scholar
  37. 37.
    Ralston CR, Blackwell JL III, Ralston NVC (2006) Effects of dietary selenium and mercury on house crickets (Acheta domesticus L.): implications of environmental co-exposures. Environmental Bioindicators 1(1):98–109CrossRefGoogle Scholar
  38. 38.
    Dyrssen D, Wedborg M (1991) The sulfur–mercury (II) system in natural waters. Water Air Soil Pollut 56:507–519CrossRefGoogle Scholar
  39. 39.
    Raymond LJ, Ralston NVC (2004) Mercury: selenium interactions and health implications. Seychelles Med Dent J 7(1):72–77 (spec issue)Google Scholar
  40. 40.
    Robinson J, Shroff J (2004) Observations on the levels of total mercury (Hg) and selenium (Se) in species common to the artisanal fisheries of Seychelles. Seychelles Med Dent J 7(1):55–60Google Scholar
  41. 41.
    USDA National Nutrient Database for Standard Reference, Release 17. Selenium, Se (μg) Content of Selected Foods. http://www.nal.usda.gov/fnic/foodcomp/ (updated: 7/27/2005)
  42. 42.
    Behne D, Pfeifer H, Rothlein D, Kyriakopoulos A (2000) Cellular and subcellular distribution of selenium and selenium-containing proteins in the rat. In: Roussel AM, Favier AE, Anderson RA (eds) Trace elements in man and animals 10. Kluwer, New York, pp 29–34Google Scholar
  43. 43.
    Rayman M (2000) The importance of selenium to human health. Lancet 356:233–241PubMedCrossRefGoogle Scholar
  44. 44.
    Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12PubMedCrossRefGoogle Scholar
  45. 45.
    Schweizer U, Braüer AU, Kohrle J., Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Rev 45(3):164–178PubMedCrossRefGoogle Scholar
  46. 46.
    Kohrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26(7):944–984PubMedCrossRefGoogle Scholar
  47. 47.
    Clark C, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. JAMA 276(24):1957–1963PubMedCrossRefGoogle Scholar
  48. 48.
    Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57(13–14):1864–1873PubMedCrossRefGoogle Scholar
  49. 49.
    Beck MA, Levandert OA, Handy J (2003) Selenium deficiency and viral infection. J Nutr 133(5:2):1463S–1467S (1 May 2003)PubMedGoogle Scholar
  50. 50.
    Weihe P, Grandjean P, Jørgensen PJ (2005) Application of hair mercury analysis to determine the impact of a seafood advisory. Environ Res 97:200–207PubMedCrossRefGoogle Scholar
  51. 51.
    Crump KS, Kjellstrom T, Shipp AM, Silvers A, Stewart A (1998) Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort, risk analysis. Risk Anal 18(6):701–713PubMedCrossRefGoogle Scholar
  52. 52.
    Budtz-Jørgensen E, Grandjean P, Weihe P (2007) Separation of risks and benefits of seafood intake. Environ Health Perspect 115(3):323–327PubMedCrossRefGoogle Scholar
  53. 53.
    Thomson CD, Robinson MF (1980) Selenium in human health and disease with emphasis on those aspects peculiar to New Zealand. Am J Clin Nutr 33(2):303–323PubMedGoogle Scholar
  54. 54.
    Mitchell JW, Kjellstrom TE, Reeves RL (1982) Mercury in takeaway fish in New Zealand. N Z Med J 95(702):112–114PubMedGoogle Scholar
  55. 55.
    Myers GJ, Davidson PW, Cox C, Shamlaye C, Palumbo D, Cernichiari E, Sloan-Reeves J, Wilding GE, Kost J, Li-S Huang, Clarkson TW (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles Child Development Study. Lancet 361:1686–1692PubMedCrossRefGoogle Scholar
  56. 56.
    Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61(2):203–215PubMedCrossRefGoogle Scholar
  57. 57.
    Paulsson K, Lindbergh K (1989) The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci Total Environ 87–88:495–507PubMedCrossRefGoogle Scholar
  58. 58.
    Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in Eastern Finnish men. Circulation 91(3):645–655PubMedGoogle Scholar
  59. 59.
    Pietinen P, Vartiainen E, Seppanen R, Aro A, Puska P (1996) Changes in diet in Finland from 1972 to 1992: Impact on coronary heart disease risk. Prev Med 25(3):243–250PubMedCrossRefGoogle Scholar
  60. 60.
    Evers DC, Han Y-J, Driscoll CT, Kamman NC, Goodale MW, Lambert KF, Holsen TM, Chen CY, Clair TA, Butler T (2007) Biological mercury hotspots in the Northeastern United States and Southeastern Canada. BioScience 57(1):29–43CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.PacMar Inc.HonoluluUSA
  2. 2.Energy and Environmental Research CenterUniversity of North DakotaGrand ForksUSA

Personalised recommendations