Biological Trace Element Research

, Volume 119, Issue 1, pp 27–34 | Cite as

Urinary Fluoride Reference Values Determined by a Fluoride Ion Selective Electrode

  • Kan Usuda
  • Koichi Kono
  • Yukari Shimbo
  • Michiko Fujihara
  • Keiichi Fujimoto
  • Atsuko Kawano
  • Rei Kono
  • Hiroshi Tsuji
  • Eri Tanida
  • Masafumi Imanishi
  • Chika Fukuda
  • Shinichi Suzuki
  • Hiroaki Tanaka
Article

Abstract

As fluoride has a very short half-life in the body and the major route for fluoride excretion is via the kidney, human exposure is best measured in urine, where the concentration is expected to be highest. The urinary fluoride concentrations of 167 healthy Japanese adults were determined by means of a fluoride ion selective electrode. When the results were corrected for a specific gravity ρ = 1.024 g cm−3, the histogram of urinary fluoride concentrations highly skewed toward low values with sharp peakedness (skewness = 1.56, kurtosis = 3.08). The normality of the log-transformed histogram (skewness = 0.12, kurtosis = 0.07) and the straight line on log-probability paper clearly showed a key feature of lognormal distribution of urinary fluoride. A geometric mean (GM) of 613.8 μg/l and 95% confidential interval (CI) of 241.0–1633.1 μg/l were established as reference values for urinary fluoride. The results presented in this study will be useful as guidelines for the biological monitoring of fluoride in normal subjects and individuals at risk of occupational or environmental fluoride exposure.

Keywords

Fluoride Ion selective electrode method Lognormal distribution Reference values Trace elements 

References

  1. 1.
    Richards D (2006) Fluoride varnish should be part of caries prevention programmes. Evid Based Dent 7:65–66PubMedCrossRefGoogle Scholar
  2. 2.
    Kleerekoper M (1998) The role of fluoride in the prevention of osteoporosis. Endocrinol Metab Clin N Am 27:441–452CrossRefGoogle Scholar
  3. 3.
    Bawaskar HS, Bawaskar PH (2006) Endemic fluorosis in an isolated village in western Maharashtra, India. Trop Doct 36:221–223PubMedCrossRefGoogle Scholar
  4. 4.
    Ruan JP, Yang ZQ, Wang ZL, Astrom AN, Bardsen A, Bjorvatn K (2005) Dental fluorosis and dental caries in permanent teeth: rural schoolchildren in high-fluoride areas in the Shaanxi province, China. Acta Odontol Scand 63:258–265PubMedCrossRefGoogle Scholar
  5. 5.
    Haimanot RT, Fekadu A, Bushra B (1987) Endemic fluorosis in the Ethiopian Rift Valley. Trop Geogr Med 39:209–217PubMedGoogle Scholar
  6. 6.
    Edelman P (1986) Hydrofluoric acid burns. Occup Med 1:89–103PubMedGoogle Scholar
  7. 7.
    Takase I, Kono K, Tamura A, Nishio H, Dote T, Suzuki K (2004) Fatality due to acute fluoride poisoning in the workplace. Leg Med 6:197–200CrossRefGoogle Scholar
  8. 8.
    World Health Organization (1994) Fluorides and oral health. Report of a WHO Expert Committee on Oral Health Status and Fluoride Use. WHO Technical Report Series no. 846, pp 1–37Google Scholar
  9. 9.
    Food and Nutrition Board, National Research Council (1989) Recommended Dietary Allowances, 10th edn. National Academy Press, Washington, DCGoogle Scholar
  10. 10.
    Jost M, Rudaz G, Liechti B (1988) Biological monitoring of fluoride-exposed workers in Switzerland: development of the internal fluoride burden in the last 10 years. Soz Praventivmed 33:112–118PubMedCrossRefGoogle Scholar
  11. 11.
    Kono K, Yoshida Y, Watanabe M, Orita Y, Dote T, Bessho Y (1993) Urine, serum and hair monitoring of hydrofluoric acid workers. Int Arch Occup Environ Health 65:S95–S98PubMedCrossRefGoogle Scholar
  12. 12.
    Assefa G, Shifera G, Melaku Z, Haimanot RT (2004) Clinical and radiological prevalence of skeletal fluorosis among retired employees of Wonji-Shoa sugar estate in Ethiopia. East Afr Med J 81:638–640PubMedGoogle Scholar
  13. 13.
    Hodge HC, Smith FA, Gedalia I (1970) Excretion of fluorides. In: Fluorides and Human Health, World Health Organization Monograph Series No. 59, WHO, Geneva, pp. 141–161Google Scholar
  14. 14.
    Carlson C, Armstrong W, Singer L (1960) Distribution and excretion of radiofluoride in the human. Proc Soc Exp Biol Med 104:235–239PubMedGoogle Scholar
  15. 15.
    Kuo HW, Chang WG, Huang YS, Lai JS (1999) Comparison of gas chromatographic and ion selective electrode methods for measuring fluoride in urine. Bull Environ Contam Toxicol 62:677–684PubMedCrossRefGoogle Scholar
  16. 16.
    Gotjamanos T, Orton V (1998) Fluoride ion concentration in 40 per cent silver fluoride solutions determined by ion selective electrode and ion chromatography techniques. Aust Dent J 43:55–56PubMedGoogle Scholar
  17. 17.
    Kondo T (1969) Application of fluoride electrode to analysis of environmental and biological samples. I. Comparison with colorimetric methods and application to water analysis. Nippon Eiseigaku Zasshi 24:448–453PubMedGoogle Scholar
  18. 18.
    Yoshida Y, Toyota S, Kono K, Watanabe M, Iwasaki K, Kato I (1978) Fluoride ion levels in the biological fluids of electronic industrial workers. Bull Osaka Med Sch 24:56–67PubMedGoogle Scholar
  19. 19.
    Yadav JP, Lata S (2003) Urinary fluoride levels and prevalence of dental fluorosis in children of Jhajjar District, Haryana. Indian J Med Sci 57:394–399PubMedGoogle Scholar
  20. 20.
    Warpeha RA, Marthaler TM (1995) Urinary fluoride excretion in Jamaica in relation to fluoridated salt. Caries Res 29:35–41PubMedCrossRefGoogle Scholar
  21. 21.
    Kono K, Yoshida Y, Yamagata H, Watanabe M, Shibuya Y, Doi K (1987) Urinary fluoride monitoring of industrial hydrofluoric acid exposure. Environ Res 42:415–420PubMedCrossRefGoogle Scholar
  22. 22.
    Iguchi K, Usuda K, Kono K, Dote T, Nishiura H, Shimahara M, Tanaka Y (1999) Urinary lithium: distribution shape, reference values, and evaluation of exposure by inductively coupled plasma argon-emission spectrometry. J Anal Toxicol 23:17–23PubMedGoogle Scholar
  23. 23.
    Usuda K, Kono K, Dote T, Miyata K, Nishiura H, Shimahara M, Sugimoto K (1998) Study on urine boron reference values of Japanese men: use of confidence intervals as an indicator of exposure to boron compounds. Sci Total Environ 220:45–53PubMedCrossRefGoogle Scholar
  24. 24.
    Usuda K, Kono K, Hayashi S, Kawasaki T, Mitsui G, Shibutani T, Dote E, Adachi K, Fujihara M, Shimbo Y, Sun W, Lu B, Nakasuji K (2006) Determination of reference concentratios of strontium in urine by inductively coupled plasma atomic emission spectrometry. Environ Health Prev Med 11:11–16CrossRefGoogle Scholar
  25. 25.
    Levine L, Fahy JP (1945) Evaluation of urinary lead determinations, 1. The significance of specific gravity. J Ind Hyg Toxicol 27:217–223Google Scholar
  26. 26.
    Usuda K, Kono K, Dote T, Shimizu H, Tominaga M, Koizumi C, Nakase E, Toshina Y, Iwai J, Kawasaki T, Akashi M (2002) Log-normal distribution of the trace element data results from a mixture of stocahstic input and deterministic internal dynamics. Biol Trace Elem Res 86:45–54PubMedCrossRefGoogle Scholar
  27. 27.
    Kiilunen M, Jarvisalo J, Makitie O, Aitio A (1987) Analysis, storage stability and reference values for urinary chromium and nickel. Int Arch Occup Environ Health 59:43–50PubMedCrossRefGoogle Scholar
  28. 28.
    Yabu Y, Miyai K, Endo Y, Hata N, Iijima Y, Hayashizaki S, Fushimi R, Harada T, Nose O, Kobayashi A et al (1998) Urinary iodide excretion measured with an iodide-selective ion electrode: studies on normal subjects of varying ages and patients with thyroid diseases. Endocrinol Jpn 35:391–398Google Scholar
  29. 29.
    Sabbioni E, Minoia C, Ronchi A, Hansen BG, Pietra R, Balducci C (1994) Trace element reference values in tissues from inhabitants of the European Union. VIII. Thallium in the Italian population. Sci Total Environ 158:227–236PubMedCrossRefGoogle Scholar
  30. 30.
    Ando M, Tadano M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Kondo T, Sakurai S, Ji R, Liang C, Chen X, Hong Z, Cao S (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271:107–116PubMedCrossRefGoogle Scholar
  31. 31.
    Massmann W (1981) Reference values of renal excretion of fluoride. J Clin Chem Clin Biochem 19:1039–1041PubMedGoogle Scholar
  32. 32.
    Toyota S (1979) Fluorine content in the urine and in the serum of hydrofluoric acid workers as an index of health administration. Sangyo Igaku 21:335–348PubMedGoogle Scholar
  33. 33.
    Foo LC, Chong YH (1975) Fluoride studies in Malaysia, Southeast Asian. J Trop Med Public Health 6:264–268Google Scholar
  34. 34.
    Singh B, Gaur S, Garg VK (2006) Fluoride in drinking water and human urine in Southern. Haryana, India. J Hazard Mater (Oct 11; Epub ahead of print)Google Scholar
  35. 35.
    Irlweck K, Czitober H, Machata G (1979) Fluorine in the urine and bones of occupationally exposed workers and non-exposed men. Acta Med Austriaca 6:99–103PubMedGoogle Scholar
  36. 36.
    Heintze SD, Bastos JR, Bastos R (1998) Urinary fluoride levels and prevalence of dental fluorosis in three Brazilian cities with different fluoride concentrations in the drinking water. Community Dent Oral Epidemiol 26:316–323PubMedCrossRefGoogle Scholar
  37. 37.
    Porcar C, Bronsoms J, Lopez-Bonet E, Valles M (1998) Fluorosis, osteomalacia and pseudohyperparathyroidism in a patient with renal failure. Nephron 79:234–235PubMedCrossRefGoogle Scholar
  38. 38.
    Usuda K, Kono K, Yoshida Y (1997) The effect of hemodialysis upon serum levels of fluoride. Nephron 75:175–178PubMedCrossRefGoogle Scholar
  39. 39.
    Usuda K, Kono K, Watanabe T, Dote T, Shimizu H, Tominaga M, Koizumi C, Nishiura H, Goto E, Nakaya H, Arisue M, Fukutomi A (2002) Hemodialyzability of ionizable fluoride in hemodialysis session. Sci Total Environ 297:183–191PubMedCrossRefGoogle Scholar
  40. 40.
    Asanami S, Tanabe Y, Koga H, Takaesu Y (1989) Fluoride contents in tea and Sakura-shrimp in relation to other inorganic constituents. Shikwa Gakuho 89:1407–1412PubMedGoogle Scholar
  41. 41.
    Fein NJ, Cerklewski FL (2001) Fluoride content of foods made with mechanically separated chicken. J Agric Food Chem 49:4284–4286PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Kan Usuda
    • 1
  • Koichi Kono
    • 1
  • Yukari Shimbo
    • 1
  • Michiko Fujihara
    • 1
  • Keiichi Fujimoto
    • 1
  • Atsuko Kawano
    • 1
  • Rei Kono
    • 1
  • Hiroshi Tsuji
    • 1
  • Eri Tanida
    • 1
  • Masafumi Imanishi
    • 1
  • Chika Fukuda
    • 1
  • Shinichi Suzuki
    • 1
  • Hiroaki Tanaka
    • 1
  1. 1.Division of Preventive and Social Medicine, Department of Hygiene and Public HealthOsaka Medical CollegeTakatsuki CityJapan

Personalised recommendations