Biological Trace Element Research

, Volume 118, Issue 3, pp 233–243

Transport of Intranasally Instilled Fine Fe2O3 Particles into the Brain: Micro-distribution, Chemical States, and Histopathological Observation

  • Bing Wang
  • Wei Y. Feng
  • Meng Wang
  • Jun W. Shi
  • Fang Zhang
  • Hong Ouyang
  • Yu L. Zhao
  • Zhi F. Chai
  • Yu Y. Huang
  • Ya N. Xie
  • Hai F. Wang
  • Jing Wang
Article

Abstract

It has been demonstrated that inhaled fine (d < 2.5 μm) and ultrafine (d < 100 nm) particles produce more severe toxicity than coarse particles. Some recent data support the concept that the central nervous system (CNS) may be a target for the inhaled fine particulates. This work describes initial observation of the transport of intranasally instilled fine ferric oxide (Fe2O3) particles in animal brain. The iron micro-distribution and chemical state in the mice olfactory bulb and brain stem on day 14 after intranasal instillation of fine Fe2O3 particle (280 ± 80 nm) suspension at a single dose of 40 mg/kg body weight were analyzed by synchrotron radiation x-ray fluorescence and x-ray absorption near-edge structure (XANES). The micro-distribution map of iron in the olfactory bulb and brain stem shows an obvious increase of Fe contents in the olfactory nerve and the trigeminus of brain stem, suggesting that Fe2O3 particles were possibly transported via uptake by sensory nerve endings of the olfactory nerve and trigeminus. The XANES results indicate that the ratios of Fe (III)/Fe (II) were increased in the olfactory bulb and brain stem. The further histopathological observation showed that the neuron fatty degeneration occurred in the CA3 area of hippocampus. Such results imply an adverse impact of inhalation of fine Fe2O3 particles on CNS.

Keywords

Fine ferric oxide particle Intranasal instillation Olfactory transportation Brain Micro-distribution Chemical state Pathological observation 

References

  1. 1.
    Samet JM, Dominici FR, Curriero FCD, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. New Engl J Med 343:1742–1749PubMedCrossRefGoogle Scholar
  2. 2.
    Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A, Anderson HR (1997) Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from the APHEA Project. Br Med J 314:1658–1663Google Scholar
  3. 3.
    Pope CA, Schwartz J, Ransom MR (1992) Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health 47:211–217PubMedCrossRefGoogle Scholar
  4. 4.
    Utell MJ, Frampton MW (2000) Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med 13:355–359PubMedGoogle Scholar
  5. 5.
    Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383PubMedGoogle Scholar
  6. 6.
    Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65(20):1513–1530CrossRefGoogle Scholar
  7. 7.
    Kreyling WG, Semmler-Behnke M, Moller W (2006) Ultrafine particle lung interactions: does size matter? J Aerosol Med 19:74–83PubMedCrossRefGoogle Scholar
  8. 8.
    Sunderman EW Jr (2001) Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin Lab Sci 31:3–22PubMedGoogle Scholar
  9. 9.
    Henriksson J, Tallkvist J, Tjälve H (1997) Uptake of nickel into the brain via olfactory neurons in rats. Toxicol Lett 91:153–162PubMedCrossRefGoogle Scholar
  10. 10.
    Burd GD (1993) Morphologic study of the effects of intranasal zinc sulfate irrigation on the mouse olfactory epithelium and olfactory bulb. Microsc Res Tech 24:195–213PubMedCrossRefGoogle Scholar
  11. 11.
    Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445PubMedCrossRefGoogle Scholar
  12. 12.
    DeLorenzo A (1970) The olfactory neuron and the blood–brain barrier. In: DeLorenzo A, Wolstenholme G, Knight J (eds) Taste and smell in vertebrates. CIBA Foundation Symposium Series. Churchill, London, pp 151–176Google Scholar
  13. 13.
    Korczynski RE (2000) Occupational health concerns in the welding industry. Appl Occup Environ Hyg 15:936–945PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164PubMedCrossRefGoogle Scholar
  15. 15.
    Götz ME, Double K, Gerlach M, Youdim MBH, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 1012:193–208PubMedCrossRefGoogle Scholar
  16. 16.
    Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178PubMedCrossRefGoogle Scholar
  17. 17.
    Rao DB, Wong BA, McManus BE, McElveen AM, James AR, Dorman DC (2003) Inhaled iron, unlike manganese, is not transported to the rat brain via the olfactory pathway. Toxicol Appl Pharmacol 193:116–126PubMedCrossRefGoogle Scholar
  18. 18.
    Garcia-Verdugo JM, Llahi S, Farinas I, Martin V (1986) Laminar organization of the main olfactory bulb of Podarcis hispanica: an electron microscopic and Golgi study. J Hirnforsch 27:87–100PubMedGoogle Scholar
  19. 19.
    Holstege G, Kuypers HGJM, Dekker JJ (1977) The organization of the bulbar fiber connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in the cat. Brain 100:265–286CrossRefGoogle Scholar
  20. 20.
    Molavi DW (1997) Neuroscience tutorial, The Washington University School of Medicine Neuroscience Tutorial. Available from: http://thalamus.wustl.edu/course/
  21. 21.
    Huang YY, Li GC, He W, Wu YR (1997) The progress of Beijing Synchrotron Radiation X-ray fluorescence microprobe analysis. Final Report of Institute of High Energy Physics, pp 317–319Google Scholar
  22. 22.
    Bodian D, Howe HA (1941) The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 69:79–85Google Scholar
  23. 23.
    Hunter DD, Dey RD (1998) Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium. Neuroscience 83:591–599PubMedCrossRefGoogle Scholar
  24. 24.
    Hunter DD, Undem BJ (1999) Identification of substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159:1943–1948PubMedGoogle Scholar
  25. 25.
    Fechter LD, Johnson DL, Lynch RA (2002) The relationship of particle size to olfactory nerve uptake of non-soluble form of manganese into brain. Neurotoxicology 23:177–183PubMedCrossRefGoogle Scholar
  26. 26.
    Lee BJ, Weiss ML, Mosier D, Chowdhury SI (1999) Spread of bovine herpesvirus type 5 (BHV-5) in the rabbit brain after intranasal inoculation. J Neurovirology 5:474–484Google Scholar
  27. 27.
    Gianutsos G, Morrow GR, Morris JB (1997) Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol 37:102–105PubMedCrossRefGoogle Scholar
  28. 28.
    Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79:135–160PubMedCrossRefGoogle Scholar
  29. 29.
    Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444:221–226PubMedCrossRefGoogle Scholar
  30. 30.
    Lewis J, Bench G, Myers O, Tinner B, Staines W, Barr E, Divine KK, Barrington W, Karlsson J (2005) Trigeminal uptake and clearance of inhaled manganese chloride in rats and mice. Neurotoxicology 26:113–123PubMedCrossRefGoogle Scholar
  31. 31.
    Malecki EA, Devenyi AG, Beard JL, Cornor JR (1999) Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res 56:113–122PubMedGoogle Scholar
  32. 32.
    Moos T, Morgan EH (1998) Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res 790:115–128PubMedCrossRefGoogle Scholar
  33. 33.
    Longa SD, Pin S, Cortès R, Soldatov AV, Alpert B (1998) Fe-heme conformations in ferric myoglobin. Biophys J 75:3154–3162PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshida S, Ektessabi A, Fujisawa S (2001) XANES spectroscopy of a single neuron from a patient with Parkinson’s disease. J Synchrotron Radiat 8:998–1000PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Bing Wang
    • 1
    • 2
  • Wei Y. Feng
    • 1
  • Meng Wang
    • 1
    • 2
  • Jun W. Shi
    • 1
    • 2
  • Fang Zhang
    • 2
  • Hong Ouyang
    • 1
  • Yu L. Zhao
    • 1
  • Zhi F. Chai
    • 1
    • 3
  • Yu Y. Huang
    • 4
  • Ya N. Xie
    • 4
  • Hai F. Wang
    • 5
  • Jing Wang
    • 5
  1. 1.Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Nuclear TechnologyShenzhen UniversityShenzhenChina
  4. 4.Beijing Synchrotron Radiation Laboratory, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  5. 5.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations