Biological Trace Element Research

, Volume 118, Issue 1, pp 65–76 | Cite as

Effect of Supplemental Dietary Zinc on the Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Skeletal Muscle and Liver from Post-absorptive Mice

  • James P. McClung
  • Tyson N. Tarr
  • Brian R. Barnes
  • Angus G. Scrimgeour
  • Andrew J. Young
Article

Abstract

Zinc (Zn) is an essential trace element that functions in cellular signaling. The mammalian target of rapamycin (mTOR) regulates the initiation of protein synthesis. The objective of this study was to determine whether Zn could stimulate protein phosphorylation in the mTOR pathway in vivo. Mice (C57BL/6J, n = 30) were fed Zn marginal diets (ZM, 5 mg/kg) for 4 weeks, followed by fasting (F) and/or refeeding with ZM or Zn supplemental (300 mg/kg, ZS) diets for 3 or 6 h. Plasma insulin was greater (P < 0.05) in refed animals as compared to F animals. Protein phosphorylation was detected using multiplex analysis and Western blotting. Multiplex analysis indicated greater (P < 0.05) p70 S6 kinase (p70S6K) and glycogen synthase kinase 3 (GSK-3 α/β) phosphorylation in livers from 6-h refed ZS animals as compared to F animals. Western blots indicated increased (P < 0.05) Akt (Ser 473) phosphorylation in skeletal muscle from animals refed ZS diets for 3 and 6 h as compared to F animals. The ZS diet affected phosphorylation of GSK-3 (α/β) in liver, as 3-h ZS refed animals had greater (P < 0.01) phosphorylation than F animals. These findings indicate that Zn may contribute to the initiation of protein synthesis as a signaling molecule in vivo.

Keywords

Zinc mTOR Translation initiation Multiplex analysis Mice 

Notes

Acknowledgments

The authors wish to acknowledge Ms. Nancy Andersen, Ms. Nicole Gauthier, Mr. Louis Marchitelli, and SPC Nelson Morales-Martinez for their expert technical assistance. The authors acknowledge Mr. Bruce Krasin (University of Massachusetts-Amherst, Department of Nutrition) for his assistance with Zn analysis.

References

  1. 1.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Phys Rev 73:79–118Google Scholar
  2. 2.
    Huang JS, Mukherjee JJ, Chung T, Crilly KS, Kiss Z (1999) Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin, and insulin-like growth factor I in fibroblasts. Eur J Biochem 266:943–951PubMedCrossRefGoogle Scholar
  3. 3.
    Tang XH, Shay NF (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinosotol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131:1414–1420PubMedGoogle Scholar
  4. 4.
    Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. BioMetals 18:333–338PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas G, Hall MN (1997) TOR signaling and control of cell growth. Curr Opin Cell Biol 9:782–787PubMedCrossRefGoogle Scholar
  6. 6.
    Kleijn M, Scheper GC, Voorma HO, Thomas AA (1998) Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544PubMedCrossRefGoogle Scholar
  7. 7.
    Kimball SR, Shantz LM, Horetsky RL, Jefferson LS (1999) Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem 274:11647–11652PubMedCrossRefGoogle Scholar
  8. 8.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945PubMedCrossRefGoogle Scholar
  9. 9.
    Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135:376–382PubMedGoogle Scholar
  10. 10.
    Kim S, Jung Y, Kim D, Koh H, Chung J (2000) Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 275:25979–25984PubMedCrossRefGoogle Scholar
  11. 11.
    Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR (2001) Zinc stimulates the activity of the insulin- and nutrient regulated protein kinase mTOR. Am J Physiol Endocrinol Metab 281:E25–E34PubMedGoogle Scholar
  12. 12.
    Reeves PG, Nielson FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951PubMedGoogle Scholar
  13. 13.
    McClung JP, Stahl CH, Marchitelli LJ, Morales-Martinez N, Mackin KM, Young AJ, Scrimgeour AG (2006) Effects of dietary phytase on body weight gain, body composition and bone strength in rats fed a low-zinc diet. J Nutr Biochem 17:190–196PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshizawa F, Endo M, Ide H, Yagasaki K, Funabiki R (1995) Translational regulation of protein synthesis in the liver and skeletal muscle of mice in response to refeeding. J Nutr Biochem 6:130–136CrossRefGoogle Scholar
  15. 15.
    Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Busk JA, Davis TA (2000) Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Am J Physiol Endocrinol Metab 279:E1080–E1087PubMedGoogle Scholar
  16. 16.
    Yoshizawa F, Kimball SR, Vary TC, Jefferson LS (1998) Effect of dietary protein on translation initiation in rat skeletal muscle and liver. Am J Physiol Endocrinol Metab 275:E814–E820Google Scholar
  17. 17.
    Reiter AK, Crozier SJ, Kimball SR, Jefferson LS (2005) Meal feeding alters translational control of gene expression in rat liver. J Nutr 135:367–375PubMedGoogle Scholar
  18. 18.
    Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS (2003) Immediate response of mammalian target of rapamycin (mTOR)-mediated signaling following acute resistance exercise in rat skeletal muscle. J Physiol 553:213–220PubMedCrossRefGoogle Scholar
  19. 19.
    Parkington JD, Siebert AP, Lebrasseur NK, Fielding RA (2003) Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 285:R1086–R1090PubMedGoogle Scholar
  20. 20.
    Parkington JD, Lebrasseur NK, Siebert AP, Fielding RA (2004) Contraction-mediated mTOR, p70S6K, and ERK 1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 97:243–248PubMedCrossRefGoogle Scholar
  21. 21.
    Pelech S (2004) Tracking cell signaling protein expression and phosphorylation by innovative proteomic solutions. Curr Pharm Biotechnol 5:69–77PubMedCrossRefGoogle Scholar
  22. 22.
    Khan IH, Mendoza S, Rhyne P, Ziman M, Tuscano J, Eisenger D, Kung H-J, Luciw PA (2006) Multiplex analysis of intracellular signaling pathways in lymphoid cells by microbead suspension arrays. Mol Cell Proteomics 5:758–768PubMedCrossRefGoogle Scholar
  23. 23.
    Kofoed K, Schneider UV, Scheel T, Andersen O, Eugen-Olsen J (2006) Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology. Clin Chem 52:1284–1293PubMedCrossRefGoogle Scholar
  24. 24.
    Lash GE, Scaife PJ, Innes BA, Otun HA, Robson SC, Searle RF, Bulmer JN (2006) Comparison of three multiplex cytokine analysis systems: luminex, searchlight and FAST quant. J Immunol Methods 309:205–208PubMedCrossRefGoogle Scholar
  25. 25.
    Flagella M, Bui S, Zheng Z, Nguyen CT, Zhang A, Pastor L, Ma Y, Yang W, Crawford KL, McMaster GK, Witney F, Luo Y (2006) A multiplex branched DNA assay for parallel quantitative gene expression profiling. Anal Biochem 352:50–60PubMedCrossRefGoogle Scholar
  26. 26.
    Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, Smith EO, Nelson KW, Ballantyne CM (2005) Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem 51:1102–1109PubMedCrossRefGoogle Scholar
  27. 27.
    Patel S, Doble B, Woodgett JR (2004) Glycogen synthase kinase-3 in insulin and Wnt signaling: a double edged sword? Biochem Soc Trans 32:803–808PubMedCrossRefGoogle Scholar
  28. 28.
    Gomot MJ, Faure P, Roussel AM, Coudray C, Osman M, Favier A (1992) Effect of acute zinc deficiency on insulin receptor binding in rat adipocytes. Biol Trace Elem Res 32:331–335PubMedGoogle Scholar
  29. 29.
    Hara-Yokoyama M, Sugiya H, Furuyama S, Wang JH, Yokoyama N (1994) Dephosphorylation of ribosomal protein S6 phosphorylated via the cAMP-mediated signaling pathway in rat parotid gland: effect of okadaic acid and Zn2+. Biochem Mol Biol Int 34:1177–1187PubMedGoogle Scholar
  30. 30.
    Li J, Elberg G, Sekar N, bin He Z, Shechter Y (1997) Antilipolytic actions of vanadate and insulin in rat adipocytes mediated by distinctly different mechanisms. Endocrinology 138:2274–2279PubMedCrossRefGoogle Scholar
  31. 31.
    Samet JM, Silbajoris R, Wu W, Graves LM (1999) Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. Am J Respir Cell Mol Biol 21:357–364PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • James P. McClung
    • 1
  • Tyson N. Tarr
    • 1
  • Brian R. Barnes
    • 2
  • Angus G. Scrimgeour
    • 1
  • Andrew J. Young
    • 1
  1. 1.Military Nutrition DivisionU.S. Army Research Institute of Environmental Medicine (USARIEM)NatickUSA
  2. 2.Military Performance DivisionUSARIEMNatickUSA

Personalised recommendations