Skip to main content
Log in

In Vitro Activities of Tigecycline in Combination with Amikacin or Colistin Against Carbapenem-Resistant Acinetobacter baumannii

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbapenem-resistant Acinetobacter baumannii (CRAB) has been a common pathogen of nosocomial infections and severely threatened the public health for decades. Tigecycline is a new type of antibacterial glycylcycline and minocycline derivative and has been used to treat CRAB in clinical practice. However, the synergistic effects of tigecycline in combination with other antibiotics including colistin or amikacin remain unclear. A total of 216 CRAB isolates were collected from multiple body parts of different patients. The gene types of these isolates were analyzed and their resistance to carbapenems was determined by Etest. Broth microdilution method was utilized to evaluate the minimum inhibitory concentration (MIC) of each sample. Checkerboard screening technique was performed to demonstrate the synergistic effects of antibiotics and fractional inhibitory concentration index (FICI) was established. Therefore, the joint treatment of tigecycline and colistin (1:1) could effectively improve the sensitivity of AB to antibiotics. OXA-24-like isolates were more sensitive to the combination of tigecycline and amikacin. On the other hand, OXA-23-like isolates were more sensitive to the combination of tigecycline and colistin. Tigecycline exhibited synergistic effects with amikacin and colistin to inhibit CRAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data is available from the authors by request.

References

  1. Ahmadi, A., & Salimizand, H. (2017). Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted blaOXA-51-like by ISAba19. International Journal of Antimicrobial Agents, 50, 119–122.

    Article  CAS  Google Scholar 

  2. Alfouzan, W., Dhar, R., Abdo, N. M., Alali, W. Q., & Rabaan, A. A. (2021). Epidemiology and microbiological profile of common healthcare associated infections among patients in the intensive care unit of a general hospital in Kuwait: A retrospective observational study. Journal of Epidemiology and Global Health. https://doi.org/10.2991/jegh.k.210524.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Antunes, L. C., Visca, P., & Towner, K. J. (2014). Acinetobacter baumannii: Evolution of a global pathogen. Pathogens and Disease, 71, 292–301.

    Article  CAS  Google Scholar 

  4. Ayibieke, A., Kobayashi, A., Suzuki, M., Sato, W., Mahazu, S., Prah, I., Mizoguchi, M., Moriya, K., Hayashi, T., Suzuki, T., Iwanaga, S., Ablordey, A., & Saito, R. (2020). Prevalence and characterization of carbapenem-hydrolyzing class D beta-lactamase-producing Acinetobacter isolates from Ghana. Frontiers in Microbiology, 11, 587398.

    Article  Google Scholar 

  5. Baginska, N., Pichlak, A., Gorski, A., & Jonczyk-Matysiak, E. (2019). Specific and selective bacteriophages in the fight against multidrug-resistant Acinetobacter baumannii. Virologica Sinica, 34, 347–357.

    Article  Google Scholar 

  6. Basatian-Tashkan, B., Niakan, M., Khaledi, M., Afkhami, H., Sameni, F., Bakhti, S., & Mirnejad, R. (2020). Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Research Notes, 13, 543.

    Article  CAS  Google Scholar 

  7. Bender, J. K., Cattoir, V., Hegstad, K., Sadowy, E., Coque, T. M., Westh, H., Hammerum, A. M., Schaffer, K., Burns, K., Murchan, S., Novais, C., Freitas, A. R., Peixe, L., Del Grosso, M., Pantosti, A., & Werner, G. (2018). Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resistance Updates, 40, 25–39.

    Article  Google Scholar 

  8. Bialvaei, A. Z., & Samadi Kafil, H. (2015). Colistin, mechanisms and prevalence of resistance. Current Medical Research and Opinion, 31, 707–721.

    Article  CAS  Google Scholar 

  9. Broeker, A., Wicha, S. G., Dorn, C., Kratzer, A., Schleibinger, M., Kees, F., Heininger, A., Kees, M. G., & Haberle, H. (2018). Tigecycline in critically ill patients on continuous renal replacement therapy: A population pharmacokinetic study. Critical Care (London, England), 22, 341.

    Article  CAS  Google Scholar 

  10. Cao, Y., Wu, H., Zhai, W., Wang, Y., Li, M., Li, M., Yang, L., Tian, Y., Song, Y., Li, J., Wang, Y., Ding, Q., Zhang, L., Cai, M., & Chang, Z. (2020). A safety consideration of mesenchymal stem cell therapy on COVID-19. Stem Cell Research, 49, 102066.

    Article  CAS  Google Scholar 

  11. Chen, Y., Yang, Y., Liu, L., Qiu, G., Han, X., Tian, S., Zhao, J., Chen, F., Grundmann, H., Li, H., Sun, J., & Han, L. (2018). High prevalence and clonal dissemination of OXA-72-producing Acinetobacter baumannii in a Chinese hospital: A cross sectional study. BMC Infectious Diseases, 18, 491.

    Article  CAS  Google Scholar 

  12. Falghoush, A., Beyenal, H., & Call, D. R. (2020). Sequential hypertonic-hypotonic treatment enhances efficacy of antibiotic against Acinetobacter baumannii biofilm communities. Antibiotics (Basel), 9.

  13. Gehrlein, M., Leying, H., Cullmann, W., Wendt, S., & Opferkuch, W. (1991). Imipenem resistance in Acinetobacter baumannii is due to altered penicillin-binding proteins. Chemotherapy, 37, 405–412.

    Article  CAS  Google Scholar 

  14. Hakeam, H. A., & Al Duhailib, Z. (2020). Tigecycline-induced coagulopathy: A literature review. International Journal of Clinical Pharmacy, 42, 846–847.

    Article  CAS  Google Scholar 

  15. Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews: Microbiology, 16, 91–102.

    CAS  PubMed  Google Scholar 

  16. Hujer, A. M., Hujer, K. M., Leonard, D. A., Powers, R. A., Wallar, B. J., Mack, A. R., Taracila, M. A., Rather, P. N., Higgins, P. G., Prati, F., Caselli, E., Marshall, S. H., Clarke, T., Greco, C., Venepally, P., Brinkac, L., Kreiswirth, B. N., Fouts, D. E., Bonomo, R. A., & Antibacterial Resistance Leadership, G. (2020). A comprehensive and contemporary “snapshot” of beta-lactamases in carbapenem resistant Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 99, 115242.

    Article  Google Scholar 

  17. Karvouniaris, M., Pontikis, K., Nitsotolis, T., & Poulakou, G. (2020). New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Review of Anti-Infective Therapy.

  18. Lai, C. C., Chen, C. C., Lu, Y. C., Chuang, Y. C., & Tang, H. J. (2019). In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infection and Drug Resistance, 12, 25–29.

    Article  CAS  Google Scholar 

  19. Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7, 55.

    PubMed  PubMed Central  Google Scholar 

  20. Leelasupasri, S., Santimaleeworagun, W., & Jitwasinkul, T. (2018). Antimicrobial susceptibility among colistin, sulbactam, and fosfomycin and a synergism study of colistin in combination with sulbactam or fosfomycin against clinical isolates of carbapenem-resistant Acinetobacter baumannii. Journal of Pathology, 2018, 3893492.

    Google Scholar 

  21. Nasr, P. (2020). Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. Journal of Hospital Infection, 104, 4–11.

    Article  CAS  Google Scholar 

  22. Neidhofer, C., Buechler, C., Neidhofer, G., Bierbaum, G., Hannet, I., Hoerauf, A., & Parcina, M. (2021). Global distribution patterns of carbapenemase-encoding bacteria in a new light: Clues on a role for ethnicity. Frontiers in Cellular and Infection Microbiology, 11, 659753.

    Article  Google Scholar 

  23. Oh, D. H., Kim, Y. C., Kim, E. J., Jung, I. Y., Jeong, S. J., Kim, S. Y., Park, M. S., Kim, A., Lee, J. G., & Paik, H. C. (2019). Multidrug-resistant Acinetobacter baumannii infection in lung transplant recipients: Risk factors and prognosis. Infectious Diseases (Lond), 51, 493–501.

    Article  CAS  Google Scholar 

  24. Pei, G., Mao, Y., & Sun, Y. (2012). In vitro activity of minocycline alone and in combination with cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii. Microbial Drug Resistance, 18, 574–577.

    Article  CAS  Google Scholar 

  25. Qureshi, Z. A., Hittle, L. E., O’Hara, J. A., Rivera, J. I., Syed, A., Shields, R. K., Pasculle, A. W., Ernst, R. K., & Doi, Y. (2015). Colistin-resistant Acinetobacter baumannii: Beyond carbapenem resistance. Clinical Infectious Diseases, 60, 1295–1303.

    Article  Google Scholar 

  26. Ramirez, M. S., & Tolmasky, M. E. (2017). Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 22.

  27. Raro, O. H. F., Gallo, S. W., Ferreira, C. A. S., & Oliveira, S. D. (2017). Carbapenem-resistant Acinetobacter baumannii contamination in an intensive care unit. Revista da Sociedade Brasileira de Medicina Tropical, 50, 167–172.

    Article  Google Scholar 

  28. Seifert, H., Stefanik, D., Olesky, M., & Higgins, P. G. (2020). In vitro activity of the novel fluorocycline TP-6076 against carbapenem-resistant Acinetobacter baumannii. International Journal of Antimicrobial Agents, 55, 105829.

    Article  CAS  Google Scholar 

  29. Singkham-In, U., Higgins, P. G., Wannigama, D. L., Hongsing, P., & Chatsuwan, T. (2020). Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PloS One, 15, e0243082.

    Article  CAS  Google Scholar 

  30. Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). beta-Lactamases and beta-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431, 3472–3500.

    Article  CAS  Google Scholar 

  31. Vahhabi, A., Hasani, A., Rezaee, M. A., Baradaran, B., Hasani, A., Samadi Kafil, H., Abbaszadeh, F., & Dehghani, L. (2020). A plethora of carbapenem resistance in Acinetobacter baumannii: No end to a long insidious genetic journey. Journal of Chemotherapy, 1–19.

  32. VanPelt, J., Stoffel, S., Staude, M. W., Dempster, K., Rose, H. A., Graney, S., Graney, E., Braynard, S., Kovrigina, E., Leonard, D. A., & Peng, J. W. (2021). Arginine modulates carbapenem deactivation by OXA-24/40 in Acinetobacter baumannii. Journal of Molecular Biology, 167150.

  33. Yamabe, K., Arakawa, Y., Shoji, M., Onda, M., Miyamoto, K., Tsuchiya, T., Akeda, Y., Terada, K., & Tomono, K. (2020). Direct anti-biofilm effects of macrolides on Acinetobacter baumannii: Comprehensive and comparative demonstration by a simple assay using microtiter plate combined with peg-lid. Biomedical Research (Tokyo, Japan), 41, 259–268.

    Article  CAS  Google Scholar 

  34. Yuan, W. L., Shen, Y. J., & Deng, D. Y. (2018). Sex bias of Acinetobacter baumannii nosocomial infection. American Journal of Infection Control, 46, 957–958.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Science and Technology Project of Binhai New Area Health Bureau (2013BWKY022).

Author information

Authors and Affiliations

Authors

Contributions

Data curation, analysis: Hongbin Wu, Heqiang Feng, Lijie He, Heping Zhang, and Ping Xu; Drafting of the manuscript: Hongbin Wu and Heqiang Feng; Concept, design of the study: Hongbin Wu and Heqiang Feng. All authors approved the publication of the manuscript.

Corresponding author

Correspondence to Hongbin Wu.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee of Tianjin Fifth Central Hospital.

Consent to Participate

Not applicable.

Consent for Publication

The current study is available from the corresponding author on reasonable request.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hongbin Wu and Heqiang Feng contributed equally to this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Feng, H., He, L. et al. In Vitro Activities of Tigecycline in Combination with Amikacin or Colistin Against Carbapenem-Resistant Acinetobacter baumannii. Appl Biochem Biotechnol 193, 3867–3876 (2021). https://doi.org/10.1007/s12010-021-03664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03664-z

Keywords

Navigation