Skip to main content

Advertisement

Log in

Adjustment of the Operational Parameters of an Unconventional Integrated and Illuminated Internally Photobioreactor (ILI-PBR) for the Batch Autotrophic Cultivation of the Chlorella minutissima, Using the Taguchi Method

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae crops targeting biotechnological applications are conducted in photobioreactors, which allow the adjustment and control of parameters of luminosity, agitation and mixing in the cultivation medium to promote better cell growth and accumulation of metabolites. In this sense, the present work used the Taguchi method to find the best adjustment of the operational parameters of an unconventional photobioreactor denominated internally illuminated integrated photobioreactor (ILI-PBR) with LED light aiming at elevating the biomass concentration, volumetric biomass productivity, and volumetric lipid productivity of Chlorella minutissima microalgae cultivated under autotrophic regime. The effects of the factors were evaluated: illumination (blue, white and red); photoperiod (12 h light:12 h dark, 1 h light:1 h dark, and 24 h clear:0 h dark); aeration (0, 3 vvm, 0.4 vvm, and 0.5 vvm); and recirculation flow rate of cultivation medium (5 L min−1, 6.5 L min−1, and 9 L min−1) on the variable responses: biomass concentration, biomass volumetric productivity, lipid content, and volumetric lipid productivity. The use of the Taguchi method allowed the increase of biomass concentration, volumetric biomass productivity, and volumetric lipid productivity in the biomass of Chlorella minutissimain 8.6%, 42%, and 143%, respectively, with the adjustment of the operational parameters of the photobioreactor used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuente, D., Keller, J., Conejero, J. A., Rogner, M., Rexroth, S., & Urchueguía, J. R. (2017). Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Research, 23, 166–177.

    Article  Google Scholar 

  2. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  3. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: a rich source for food and medicine. Saudi Jounal of Biological Sciences, 26(4), 709–722.

    Article  Google Scholar 

  4. Al Hattab, M., & Ghaly, A. (2015). Production of biodiesel from marine and freshwater microalgae: a review. Advances in Research, 24, 107–155.

    Article  Google Scholar 

  5. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  6. Carvalho, J. C. M., Matsudo, M. C., Bezerra, R. P., Ferreira-Camargo, L. S., & Sato, S. (2014). In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal biorefineries. New York: Springer.

    Google Scholar 

  7. Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3, 318–329.

    Article  Google Scholar 

  8. Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904–912.

    Article  CAS  Google Scholar 

  9. Montgomery, D. C. (2005). Design and analysis of experiment (sixth ed.). New York: John Wiley.

    Google Scholar 

  10. Peace, G. S. (1993). Taguchi methods a hands-on approach. Massachusetts: Addison Wesley.

    Google Scholar 

  11. Bobde, K., Momin, H., Bhattacharjee, A., & Aikat, K. (2019). Energy assessment and enhancement of the lipid yield of indigenous Chlorella sp. KA-24NITD using Taguchi approach. Renewable Energy, 131, 1226–1235.

    Article  CAS  Google Scholar 

  12. Pereira, F. M., Loures, C. A., Amaral, M. S., Gomes, F. M., Pedro, G. A., Machado, M. A. G., Reis, C. E. R., & Silva, M. B. (2018). Evaluation of fatty acids production by Chlorella minutissima in batch bubble-column photobioreactor. Fuel, 230, 155–162.

    Article  CAS  Google Scholar 

  13. Guillard, R. R. L. (1957). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29–60). New York: Plenum.

    Google Scholar 

  14. Gombert, A. K. (2001). Kinetics of fermentative processes-appendix. In W. Schmidell, U. A. Lima, E. Aquarone, W. Borzani, Coordinators. Industrial Biotechnology-Biochemistry Engineering, São Paulo, Edgard Blücher, 2: 93–122.

  15. Le Duy, A., & Zajic, J. E. (1973). A geometrical approach for differentiation of an experimental function at a point applied to growth and product formation. Biotechnology and Bioengineering, 15, 805–810.

    Article  Google Scholar 

  16. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 389–395.

  17. Hultberg, M., Jönsson, H. L., Bergstrand, K. J., & Carlsson, A. S. (2014). Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresource Technology, 159, 465–467.

    Article  CAS  Google Scholar 

  18. Duarte, J. H., & Costa, J. A. V. (2018). Blue light emiting diodes (LEDs) as an energy source in Chlorella fusca and Synechococcus nidulans cultures. Bioresource Technology, 247, 1242–1245.

    Article  CAS  Google Scholar 

  19. Yam, F. K., & Hassan, Z. (2005). Innovative advances in LED technology. Microelectronics Journal, 36, 129–137.

    Article  CAS  Google Scholar 

  20. Brindley, C., Jiménez-Ruíz, N., Acíens, J. M., & Fernández, S. (2016). Light regime optmization in photobioreactors using a dynamics photosynthesis model. Algal Research, 16, 399–408.

    Article  Google Scholar 

  21. Loures, C. A., Amaral, M. S., Da Rós, P. C. M., Zorn, S. M. F. E., Castro, H. F. C., & Silva, M. B. (2018). Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: A comparison between homogeneous and heterogeneous catalysts. Fuel, 211, 261–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) for financial support to conduct this work and Bank of microorganism Aidar & Kutner (BMA&K) of Oceanographic Institute of the University of São Paulo for kindly donating the microalgae Chlorella minutissima 26a used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Souza Amaral.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Mateus de Souza Amaral

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, M.d., Loures, C.C.A., Silva, M.B. et al. Adjustment of the Operational Parameters of an Unconventional Integrated and Illuminated Internally Photobioreactor (ILI-PBR) for the Batch Autotrophic Cultivation of the Chlorella minutissima, Using the Taguchi Method. Appl Biochem Biotechnol 191, 245–257 (2020). https://doi.org/10.1007/s12010-020-03259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03259-0

Keywords

Navigation