Advertisement

Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries

  • Zi-Jing Yu
  • Huan Li
  • Jing-Hua Yao
  • Jian-Jun Wu
  • Yi-xin Zhang
  • Lei XiaoEmail author
Article
  • 11 Downloads

Abstract

In the present work, the effects of different energy substrates and nickel ions (Ni2+) and cadmium ions (Cd2+) on the growth of Acidithiobacillus ferrooxidans (A. ferrooxidans) were investigated. Ferrous sulphate (FeSO4) was the optimum energy substrate for A. ferrooxidans growth, among the selected substrates. When cultured together with FeSO4 and sulphur (S), A. ferrooxidans first oxidised the ferrous ions (Fe2+), and the S was utilised as the concentration of Fe2+ decreased. After adapting to culture with Ni2+ and Cd2+, A. ferrooxidans presented good tolerance to both ions, with the maximum concentration reaching 4.11 g/L Ni2+ and 1.69 g/L Cd2+. A preliminary simulation of industrial application was also performed on used Ni-Cd batteries. With bioleaching, the highest concentrations of Cd2+ and Ni2+ were 3003 mg/L at day 8 and 1863 mg/L at day 14, respectively.

Keywords

Acidithiobacillus ferrooxidans Energy substrate Ni/Cd ions Bioleaching Ferrous sulphate Battery recycling 

Notes

Funding Information

This study was funded by the Independent Innovation Project funded by the Ministry of Education-Ecological and Environmental Restoration and Protection (2018ZZCX12).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Morrow, H. (2003). Cadmium 2003 batteries, China and the European Commission. In Metal Bulletin 14th International Minor Metals Seminar. Kowloon Shangri-La Hotel.Google Scholar
  2. 2.
    Vassura, I., Morselli, L., Bernardi, E., & Passarini, F. (2009). Chemical characterisation of spent rechargeable batteries. Waste Management, 29(8), 2332–2335.CrossRefGoogle Scholar
  3. 3.
    Arshadi, M., & Mousavi, S. (2015). Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Separation and Purification Technology, 147, 210–219.CrossRefGoogle Scholar
  4. 4.
    Kim, M., Seo, J., Choi, Y., & Kim, G. (2016). Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Management, 51, 168–173.CrossRefGoogle Scholar
  5. 5.
    Ijadi Bajestani, M., Mousavi, S. M., & Shojaosadati, S. A. (2014). Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Separation and Purification Technology, 132, 309–316.CrossRefGoogle Scholar
  6. 6.
    Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y., & Wang, W. (2018). Acidithiobacillus ferrooxidans and its potential application. Extremophiles, 22(4), 563–579.CrossRefGoogle Scholar
  7. 7.
    Rawlings, D. E. (2005). Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4, 13.CrossRefGoogle Scholar
  8. 8.
    Nestor, D., Valdivia, U., & Chaves, A. P. (2001). Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. International Journal of Mineral Processing, 62, 187–198.CrossRefGoogle Scholar
  9. 9.
    Gao, S., Luo, X., Nie, E., Zheng, G., Zheng, Z., Chen, G., & Feng, J. (2010). Role of Acidithiobacillus ferrooxidans in bioleaching of copper. Chinese Journal of Environmental Engineering, 3, 677–682.Google Scholar
  10. 10.
    Wang, B., Yuan, X., Han, L., Wang, X., & Zhang, L. (2015). Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans. Environmental Earth Sciences, 74, 5087–5096.CrossRefGoogle Scholar
  11. 11.
    San Martín, F., Kracht, W., & Vargas, T. (2018). Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Minerals Engineering, 117, 127–131.CrossRefGoogle Scholar
  12. 12.
    Suzuki, I., Takeuchi, T. L., Yuthasastrakosol, T. D., & Oh, J. K. (1990). Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Applied and Environmental Microbiology, 56(6), 1620–1626.CrossRefGoogle Scholar
  13. 13.
    Malhotra, S., Tankhiwale, A., Rajvaidya, A., & Pandey, R. (2002). Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresource Technology, 85(3), 225–234.CrossRefGoogle Scholar
  14. 14.
    Chandraprabha, M., & Natarajan, K. (2013). Role of outer membrane exopolymers of Acidithiobacillus ferrooxidans in adsorption of cells onto pyrite and chalcopyrite. International Journal of Mineral Processing, 123, 152–157.CrossRefGoogle Scholar
  15. 15.
    Johnson, D. B., & Hallberg, K. B. (2009). Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Advances in Microbial Physiology, 54, 201–255.CrossRefGoogle Scholar
  16. 16.
    Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77, 642.CrossRefGoogle Scholar
  17. 17.
    Mahandra, H., Singh, R., & Gupta, B. (2018). Recycling of Zn-C and Ni-Cd spent batteries using Cyphos IL 104 via hydrometallurgical route. Journal of Cleaner Production, 172, 133–142.CrossRefGoogle Scholar
  18. 18.
    (USEPA), U. E. P. A (1986) Test methods for evaluating solid waste, Laboratory Manual Physical/Chemical Methods.Google Scholar
  19. 19.
    Zhu, N., Zhang, L., Li, C., & Cai, C. (2003). Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Management, 23(8), 703–708.CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Fan, W. P., Fang, P., & Xia, C. (2001). Effect of substrates on bio-oxidation catalyzed by T. ferrooxidans. Journal of Nanjing University of Chemical Technology, 23, 37–41.Google Scholar
  21. 21.
    Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y., & Oosawa, K. (2003). Effect of intracellular pH on rotational speed of bacterial flagellar motors. Journal of Bacteriology, 185, 1190–1194.CrossRefGoogle Scholar
  22. 22.
    Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiological Reviews, 49(4), 359–378.CrossRefGoogle Scholar
  23. 23.
    Velgosová, O., Kaduková, J., Marcinčáková, R., Palfy, P., & Trpčevská, J. (2013). Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Management, 33(2), 456–461.CrossRefGoogle Scholar
  24. 24.
    Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals (pp. 115–133). Aglan: Heavy Metals; IntechOpen.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Zi-Jing Yu
    • 1
  • Huan Li
    • 1
  • Jing-Hua Yao
    • 1
  • Jian-Jun Wu
    • 1
  • Yi-xin Zhang
    • 1
  • Lei Xiao
    • 1
    Email author
  1. 1.Key Laboratory of Coal Processing and Efficient Utilization, Ministry of EducationChina University of Mining and TechnologyXuzhouChina

Personalised recommendations