Advertisement

Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification

  • Dongjie Yang
  • Yalin Wang
  • Wenjing Huang
  • Zhixian LiEmail author
  • Xueqing QiuEmail author
Article
  • 9 Downloads

Abstract

Horseradish peroxidase (HRP) has demonstrated high activity for the modification of lignin. In this paper, several lignin model compounds with different functional groups and linkages are selected to investigate the reactivity of HRP-catalyzed lignin modification. The phenolic groups of lignin model compounds are indispensable for the HRP-catalyzed modification process. The introduction of the sulfomethylated methyl group or methoxyl group could facilitate or inhibit the modification, respectively. The oxidative coupling activity of α-O-4 lignin model compounds is higher than that of β-O-4 compounds. Meanwhile, the free energy obtained by density functional theory (DFT) is used to verify the results of the experimental study, and the order of preference for linkages is β-5 > β-β > β-O-4 in most cases. In addition, electron cloud density and steric hindrance of lignin model compounds have crucial effects on the oxidation and modification processes. Finally, the mechanism of HRP-catalyzed lignin modification is proposed.

Keywords

Lignin Horseradish peroxidase Lignin modification Density functional theory 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the National Key Research and Development Program of China (2018YFB1501503), National Natural Science Foundation of China (21878114, 21706079, 21690083, 21576106), Natural Science Foundation of Guangdong Province of China (2018B030311052, 2017B090903003), and State Key Laboratory of Pulp and Paper Engineering (201828).

Compliance with Ethical Standards

Competing Interests

The authors declare they have no competing interests.

References

  1. 1.
    Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190–200.CrossRefGoogle Scholar
  2. 2.
    Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S. F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852–908.CrossRefGoogle Scholar
  3. 3.
    Kai, D., Tan, M. J., Chee, P. L., Chua, Y. K., Yap, Y. L., & Loh, X. J. (2016). Towards lignin-based functional materials in a sustainable world. Green Chemistry, 18, 1175–1200.CrossRefGoogle Scholar
  4. 4.
    Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products, 27, 202–207.CrossRefGoogle Scholar
  5. 5.
    Jonsson, L. J., & Martin, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.CrossRefGoogle Scholar
  6. 6.
    Amin, F. R., Khalid, H., Zhang, H., Rahman, S. U., Zhang, R. H., Liu, G. Q., & Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1), 72.  https://doi.org/10.1186/s13568-017-0375-4.
  7. 7.
    Matsushita, Y. (2015). Conversion of technical lignins to functional materials with retained polymeric properties. Journal of Wood Science, 61, 230–250.CrossRefGoogle Scholar
  8. 8.
    Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachua, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.CrossRefGoogle Scholar
  9. 9.
    Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 55, 8164–8215.CrossRefGoogle Scholar
  10. 10.
    Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269.CrossRefGoogle Scholar
  11. 11.
    Buono, P., Duval, A., Verge, P., Averous, L., & Habibi, Y. (2016). New insights on the chemical modification of lignin: Acetylation versus silylation. ACS Sustainable Chemistry & Engineering, 4, 5212–5222.CrossRefGoogle Scholar
  12. 12.
    Wang, J. H., Feng, J. J., Jia, W. T., Chang, S., Li, S. Z., & Li, Y. X. (2015). Lignin engineering through laccase modification: A promising field for energy plant improvement. Biotechnology for Biofuels, 8, 145.  https://doi.org/10.1186/s13068-015-0331-y.
  13. 13.
    Gronqvist, S., Viikari, L., Niku-Paavola, M. L., Orlandi, M., Canevali, C., & Buchert, J. (2005). Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Applied Microbiology and Biotechnology, 67, 489–494.CrossRefGoogle Scholar
  14. 14.
    Arora, D. S., & Sharma, R. K. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160, 1760–1788.CrossRefGoogle Scholar
  15. 15.
    Zhou, H. F., Yang, D. J., Qiu, X. Q., Wu, X. L., & Li, Y. (2013). A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H2O2 incubation. Applied Microbiology and Biotechnology, 97, 10309–10320.CrossRefGoogle Scholar
  16. 16.
    Yang, D. J., Wu, X. L., Qiu, X. Q., Chang, Y. Q., & Lou, H. M. (2014). Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresource Technology, 155, 418–421.CrossRefGoogle Scholar
  17. 17.
    Yang, D. J., Chang, Y. Q., Wu, X. L., Qiu, X. Q., & Lou, H. M. (2014). Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Advances, 4, 53855–53863.CrossRefGoogle Scholar
  18. 18.
    Zhou, H. F., Chang, Y., Wu, X. L., Yang, D. J., & Qiu, X. Q. (2015). Horseradish peroxidase modification of sulfomethylated wheat straw alkali lignin to improve its dispersion performance. ACS Sustainable Chemistry & Engineering, 3, 518–523.CrossRefGoogle Scholar
  19. 19.
    Ding, Z. X., Qiu, X. Q., Fang, Z. Q., & Yang, D. J. (2018). Effect of molecular weight on the reactivity and dispersibility of sulfomethylated alkali lignin modified by horseradish peroxidase. ACS Sustainable Chemistry & Engineering, 6, 14197–14202.CrossRefGoogle Scholar
  20. 20.
    Sangha, A. K., Davison, B. H., Standaert, R. F., Davis, M. F., Smith, J. C., & Parks, J. M. (2014). Chemical factors that control lignin polymerization. The Journal of Physical Chemistry. B, 118(1), 164–170.CrossRefGoogle Scholar
  21. 21.
    Custodis, V. B. F., Hemberger, P., Ma, Z. Q., & van Bokhoven, J. A. (2014). Mechanism of fast pyrolysis of lignin: Studying model compounds. The Journal of Physical Chemistry. B, 118(29), 8524–8531.CrossRefGoogle Scholar
  22. 22.
    Beste, A., & Buchanan, A. C. (2009). Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. The Journal of Organic Chemistry, 74(7), 2837–2841.CrossRefGoogle Scholar
  23. 23.
    Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2006). EPR investigation into the effects of substrate structure on peroxidase-catalyzed phenylpropanold oxidation. Biomacromolecules, 7(1), 268–273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations