Biotechnological Applications of Paenibacillus sp. D9 Lipopeptide Biosurfactant Produced in Low-cost Substrates

  • Abdullahi Adekilekun JimohEmail author
  • Johnson Lin


The present study assesses the Paenibacillus sp. D9 lipopeptide biosurfactant synthesis in cheap substrates including functional properties and applicability for varying biotechnological processes. Different experimental setups were made for oil dispersion, heavy metals removals from contaminated environments, and washing performance. The study revealed surface tension activities of 31.7–32.7 mN/m, and maximum biosurfactant yield of more than 8 g/L. Removals of 85.90%, 98.68%, 99.97%, 63.28%, 99.93%, and 94.22% were obtained for Ca, Cu, Fe, Mg, Ni, and Zn, respectively from acid mine effluents. In comparison with chemical surfactants, there was pronounced removal of heavy metals from wastewater, contaminated sands, and vegetable matter, as well as improved oil dispersing activity. A comparative study revealed that biosurfactant was more efficient (> 60%) for removal of tomato sauce and coffee stains than chemical surfactants (< 50%). Thus, lipopeptide biosurfactants are green biomolecules reducing hazards and contaminations within the environment. The future use of this lipopeptide biosurfactant is greatly promising in biotechnology.


Biosurfactant Chemical surfactants Detergents Heavy metals Low cost Paenibacillus sp. D9 


Supplementary material

12010_2020_3246_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3734 kb)


  1. 1.
    De Almeida, D. G., Da Soares Silva, R. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., Banat, I. M., & Sarubbo, L. A. (2016). Biosurfactants: promising molecules for petroleum biotechnology advances. Frontiers in Microbiology, 7, 1718.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sarubbo, L. A., Lunaa, J. M., & Rufinoa, R. D. (2015). Application of a biosurfactant produced in low-cost substrates in the removal of hydrophobic contaminants. Chemical Engineering, 43, 295–300.Google Scholar
  3. 3.
    Jimoh, A. A., & Lin, J. (2019). Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109607.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jimoh, A. A., & Lin, J. (2019). Heterologous expression of Sfp-type phosphopantetheinyl transferase is indispensable in the biosynthesis of lipopeptide biosurfactant. Molecular Biotechnology, 161(11), 836–851.CrossRefGoogle Scholar
  5. 5.
    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 401.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Anyanwu, C., Obi, S., & Okolo, B. (2011). Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. Journal of Applied Sciences Research, 7, 79–87.Google Scholar
  7. 7.
    Syahriansyah, U. K. M., & Hamzah, A. (2016). Determination of optimum conditions and stability study of biosurfactant produced by Bacillus subtilis UKMP-4M5. Malaysian Journal of Analytical Sciences, 20, 986–1000.CrossRefGoogle Scholar
  8. 8.
    Zhao, F., Shi, R., Cui, Q., Han, S., Dong, H., & Zhang, Y. (2017). Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 157, 124–130.CrossRefGoogle Scholar
  9. 9.
    Bezza, F. A., & Chirwa, E. M. (2015). Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Safety and Environmental Protection, 98, 354–364.CrossRefGoogle Scholar
  10. 10.
    Usman, M. M., Dadrasnia, A., Lim, K. T., Mahmud, A. F., & Ismail, S. (2016). Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 3, 289–304.CrossRefGoogle Scholar
  11. 11.
    Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262–269.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Singh, J., & Kalamdhad, A. S. (2011). Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment, 1, 15–21.Google Scholar
  13. 13.
    Bouassida, M., Fourati, N., Ghazala, I., Ellouze-Chaabouni, S., & Ghribi, D. (2018). Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Engineering in Life Sciences, 18, 70–77.CrossRefGoogle Scholar
  14. 14.
    Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frontiers in Microbiology, 8, 279.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yañez-Ocampo, G., Somoza-Coutiño, G., Blanco-González, C., & Wong-Villarreal, A. (2017). Utilization of agroindustrial waste for biosurfactant production by native bacteria from Chiapas. Open Agriculture, 2, 341–349.CrossRefGoogle Scholar
  16. 16.
    Jimoh, A. A., & Lin, J. (2019). Enhancement of Paenibacillus sp. D9 lipopeptide biosurfactant production through the optimization of medium composition and its application for biodegradation of hydrophobic pollutants. Applied Biochemistry and Biotechnology, 187(3), 724–743.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Jimoh, A. A., & Lin, J. (2019). Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. International journal of Environmental Science and Technology, 16, 4143–4158.CrossRefGoogle Scholar
  18. 18.
    Deng, M. C., Li, J., Hong, Y. H., Xu, X. M., Chen, W. X., Yuan, J. P., Peng, J., Yi, M., & Wang, J. H. (2016). Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01. Journal of Applied Microbiology, 120, 889–899.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sharma, D., Saharan, B. S., Chauhan, N., Procha, S., & Lal, S. (2015). Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus, 4, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dahrazma, B., & Mulligan, C. N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 69(5), 705–711.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Santos, D. K. F., Resende, A. H. M., de Almeida, D. G., Soares da Silva, R. C. F., Rufino, R. D., Luna, J. M., Banat, I. M., & Sarubbo, L. A. (2017). Candida lipolytica UCP0988 biosurfactant: Potential as a bioremediation agent and in formulating a commercial related product. Frontiers in Microbiology, 8, 767.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Andrade Silva, N. R., Luna, M. A., Santiago, A. L., Franco, L. O., Silva, G. K., de Souza, P. M., Okada, K., Albuquerque, C. D., Silva, C. A., & Campos-Takaki, G. M. (2014). Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International Journal of Molecular Sciences, 15(9), 15377–15395.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Santos, E., Teixeira, M., Converti, A., Porto, A., & Sarubbo, L. (2018). Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatalysis and Agricultural Biotechnology, 17, 142–150.CrossRefGoogle Scholar
  24. 24.
    Lan, G., Fan, Q., Liu, Y., Chen, C., Li, G., Liu, Y., & Yin, X. (2015). Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochemical Engineering Journal, 101, 44–54.CrossRefGoogle Scholar
  25. 25.
    Partovi, M., Lotfabad, T. B., Roostaazad, R., Bahmaei, M., & Tayyebi, S. (2013). Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World Journal of Microbiology and Biotechnology, 29(6), 1039–1047.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Velioglu, Z., & Urek, R. O. (2016). Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid-state fermentation. Biotechnology and Bioprocess Engineering, 21, 430–438.CrossRefGoogle Scholar
  27. 27.
    Kim, J., & Vipulanandan, C. (2006). Removal of lead from contaminated water and clay soil using a biosurfactant. Journal of Environmental Engineering, 132, 777–786.CrossRefGoogle Scholar
  28. 28.
    Sarubbo, L., Rocha Jr., R., Luna, J., Rufino, R., Santos, V., & Banat, I. (2015). Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31, 707–723.CrossRefGoogle Scholar
  29. 29.
    Juwarkar, A. A., Dubey, K. V., Nair, A., & Singh, S. K. (2008). Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian Journal of Microbiology, 48(1), 142–146.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Elouzi, A. A., Akasha, A. A., Elgerbi, A. M., El-Baseir, M., & El Gammudi, B. A. (2012). Removal of heavy metals contamination by bio-surfactants (rhamnolipids). Journal of Chemical and Pharmaceutical Research, 4, 4337–4341.Google Scholar
  31. 31.
    Hidayati, N., Surtiningsih, T., & Ni’matuzahroh. (2014). Removal of heavy metals Pb, Zn and Cu from sludge waste of paper industries using biosurfactant. Journal of Bioremediation & Biodegradation, 5, 255.Google Scholar
  32. 32.
    Akpor, O. (2011). Wastewater effluent discharge: effects and treatment processes. International Proceedings of Chemical, Biology, and Environmental Engineering, 20, 85–91.Google Scholar
  33. 33.
    Wen, J., Stacey, S. P., McLaughlin, M. J., & Kirby, J. K. (2009). Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 41, 2214–2221.CrossRefGoogle Scholar
  34. 34.
    Meenakshisundaram, M., & Pramila, M. (2017). Detoxification of heavy metals using microbial biosurfactant. International Journal of Current Microbiology and Applied Sciences, 6, 402–411.CrossRefGoogle Scholar
  35. 35.
    Giri, S. S., Sen, S. S., Jun, J. W., Sukumaran, V., & Park, S. C. (2017). Role of Bacillus licheniformis VS16-derived biosurfactant in mediating immune responses in Carp Rohu and its application to the food industry. Frontiers in Microbiology, 8, 514.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ochoa-Loza, F. J., Noordman, W. H., Jannsen, D. B., Brusseau, M. L., & Maier, R. M. (2007). Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere, 66(9), 1634–1642.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Luna, J. M., Santos Filho, A. S., Rufino, R. D., & Sarubbo, L. A. (2016). Production of biosurfactant from Candida bombicola URM 3718 for environmental applications. Chemical Engineering, 49, 583–588.Google Scholar
  38. 38.
    Ibrahim, M. L., Ijah, U. J. J., Manga, S. B., Bilbis, L. S., & Umar, S. (2013). Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. International Biodeterioration and Biodegradation, 81, 28–34.CrossRefGoogle Scholar
  39. 39.
    Chandran, P., & Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering, Science and Technology, 2, 6942–6953.Google Scholar
  40. 40.
    Freitas, B. G., Brito, J. M., Brasileiro, P. P., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Frontiers in Microbiology, 7, 1646.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Turbekar, R., Malik, N., Dey, D., & Thakare, D. (2014). Development of rhamnolipid based white board cleaner. International Journal of Applied Sciences and Biotechnology, 2, 570–573.CrossRefGoogle Scholar
  42. 42.
    Joshi-Navare, K., Khanvilkar, P., & Prabhune, A. (2013). Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochemistry Research International, 2013, 11.CrossRefGoogle Scholar
  43. 43.
    Khaje Bafghi, M., & Fazaelipoor, M. H. (2012). Application of rhamnolipid in the formulation of a detergent. Journal of Surfactants and Detergents, 15, 679–684.CrossRefGoogle Scholar
  44. 44.
    Sajna, K. V., Sukumaran, R. K., Jayamurthy, H., Reddy, K. K., Kanjilal, S., Prasad, R. B., & Pandey, A. (2013). Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 78, 85–92.CrossRefGoogle Scholar
  45. 45.
    Savarino, P., Montoneri, E., Musso, G., & Boffa, V. (2010). Biosurfactants from urban wastes for detergent formulation: surface activity and washing performance. Journal of Surfactants and Detergents, 13, 59–68.CrossRefGoogle Scholar
  46. 46.
    da Rocha Junior, R. B., Meira, H. M., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2018). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 30(4), 215–233.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and ScienceUniversity of KwaZulu-Natal (Westville campus)DurbanSouth Africa

Personalised recommendations