Surface Functionalization of Poly(N-Vinylpyrrolidone) onto Poly(Dimethylsiloxane) for Anti-Biofilm Application

  • Trong-Nghia Le
  • Cheng-Kang LeeEmail author


Poly(dimethylsiloxane) (PDMS) has been widely used in the field of microfluidics, optical systems, and sensors. However, the hydrophobic nature of PDMS leads to low surface wettability and biofouling problems due to the nonspecific proteins–hydrophobic surface interactions and cell/bacterial adhesion. In this work, the PDMS surface was first introduced with amino groups (PDMS-NH2) via KOH-catalyzed reaction with 3-aminopropyltriethoxysilane (APTES). The PDMS-NH2 was then grafted with poly(N-vinylpyrrolidone) (PVP) based on the self-adhesion reaction between the amino surface and catechol-functionalized PVP (CA-PLL-PVP). CA-PLL-PVP as a comb-polymer was synthesized by conjugating PVP-COOH along with caffeic acid to the ε-polylysine backbone. A significantly enhanced water wettability was observed with contact angles dropped from 116° to 14° after coating with CA-PLL-PVP. The coated surface demonstrated excellent antifouling performance that no appreciable Staphylococcus epidermidis biofilm formation could be observed. This novel facile antifouling coating on PDMS surface may find greater biomedical applications to eliminate the potential adherence problems caused by natural biofouling.


Anti-biofilm PDMS PVP copolymer Catechol-assisted coating 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12010_2020_3238_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2616 kb)


  1. 1.
    Ren, K., Chen, Y., & Wu, H. (2014). New materials for microfluidics in biology. Current Opinion in Biotechnology, 25, 78–85.CrossRefGoogle Scholar
  2. 2.
    Schneider, F., Fellner, T., Wilde, J., & Wallrabe, U. (2008). Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering, 18(6), 065008.CrossRefGoogle Scholar
  3. 3.
    Shih, T.-K., Chen, C.-F., Ho, J.-R., & Chuang, F.-T. (2006). Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectronic Engineering, 83(11–12), 2499–2503.CrossRefGoogle Scholar
  4. 4.
    Zhang, H., & Chiao, M. (2015). Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 35(2), 143–155.CrossRefGoogle Scholar
  5. 5.
    Sui, G., Wang, J., Lee, C.-C., Lu, W., Lee, S. P., Leyton, J. V., Wu, A. M., & Tseng, H.-R. (2006). Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels. Analytical Chemistry, 78(15), 5543–5551.CrossRefGoogle Scholar
  6. 6.
    Hoek, I., Tho, F., & Arnold, W. M. (2010). Sodium hydroxide treatment of PDMS based microfluidic devices. Lab on a Chip, 10(17), 2283–2285.CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Chen, Y., & Brook, M. A. (2013). Facile functionalization of PDMS elastomer surfaces using thiol–ene click chemistry. Langmuir, 29(40), 12432–12442.CrossRefGoogle Scholar
  8. 8.
    Brook, M. A., Zhao, S., Liu, L., & Chen, Y. (2011). Surface etching of silicone elastomers by depolymerization. Canadian Journal of Chemistry, 90(1), 153–160.CrossRefGoogle Scholar
  9. 9.
    Chen, H., Zhang, Z., Chen, Y., Brook, M. A., & Sheardown, H. (2005). Protein repellant silicone surfaces by covalent immobilization of poly (ethylene oxide). Biomaterials, 26(15), 2391–2399.CrossRefGoogle Scholar
  10. 10.
    Guo, D.-J., Han, H.-M., Xiao, S.-J., & Dai, Z.-D. (2007). Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly (ethylene glycol) on hydrosilanes-poly (dimethylsiloxane) surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1–3), 129–135.CrossRefGoogle Scholar
  11. 11.
    Wang, A.-J., Feng, J.-J., & Fan, J. (2008). Covalent modified hydrophilic polymer brushes onto poly (dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids. Journal of Chromatography A, 1192(1), 173–179.CrossRefGoogle Scholar
  12. 12.
    Yeh, P. Y., Zhang, Z., Lin, M., & Cao, X. (2012). Nonfouling hydrophilic poly (ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices. Langmuir, 28(46), 16227–16236.CrossRefGoogle Scholar
  13. 13.
    Seo, J.-H., Shibayama, T., Takai, M., & Ishihara, K. (2011). Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Matter, 7(6), 2968–2976.CrossRefGoogle Scholar
  14. 14.
    Kuo, W.-H., Wang, M.-J., Chien, H.-W., Wei, T.-C., Lee, C., & Tsai, W.-B. (2011). Surface modification with poly (sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules, 12(12), 4348–4356.CrossRefGoogle Scholar
  15. 15.
    Keefe, A. J., Brault, N. D., & Jiang, S. (2012). Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer. Biomacromolecules, 13(5), 1683–1687.CrossRefGoogle Scholar
  16. 16.
    Wu, Z., Tong, W., Jiang, W., Liu, X., Wang, Y., & Chen, H. (2012). Poly (N-vinylpyrrolidone)-modified poly (dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 96, 37–43.CrossRefGoogle Scholar
  17. 17.
    Liu, X., Tong, W., Wu, Z., & Jiang, W. (2013). Poly (N-vinylpyrrolidone)-grafted poly (dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 3(14), 4716–4722.CrossRefGoogle Scholar
  18. 18.
    Liu, X., Xu, Y., Wu, Z., & Chen, H. (2013). Poly (N-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromolecular Bioscience, 13(2), 147–154.CrossRefGoogle Scholar
  19. 19.
    Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426–430.CrossRefGoogle Scholar
  20. 20.
    Kang, S. M., Hwang, N. S., Yeom, J., Park, S. Y., Messersmith, P. B., Choi, I. S., Langer, R., Anderson, D. G., & Lee, H. (2012). One-step multipurpose surface functionalization by adhesive catecholamine. Advanced Functional Materials, 22(14), 2949–2955.CrossRefGoogle Scholar
  21. 21.
    Li, A., Mu, Y., Jiang, W., & Wan, X. (2015). A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chemical Communications, 51(44), 9117–9120.CrossRefGoogle Scholar
  22. 22.
    Mosaiab, T., Jeong, C. J., Shin, G. J., Choi, K. H., Lee, S. K., Lee, I., In, I., & Park, S. Y. (2013). Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering: C, 33(7), 3786–3794.CrossRefGoogle Scholar
  23. 23.
    Au-Duong, A.-N., & Lee, C.-K. (2018). Facile protein-resistant and anti-biofilm surface coating based on catechol-conjugated poly (N-vinylpyrrolidone). Colloid and Polymer Science, 296(7), 1173–1182.CrossRefGoogle Scholar
  24. 24.
    Le, T.-N., Au-Duong, A.-N., & Lee, C.-K. (2019). Facile coating on microporous polypropylene membrane for antifouling microfiltration using comb-shaped poly (N-vinylpyrrolidone) with multivalent catechol. Journal of Membrane Science, 574, 164–173.CrossRefGoogle Scholar
  25. 25.
    Aroua, S., Tiu, E. G. V., Ayer, M., Ishikawa, T., & Yamakoshi, Y. (2015). RAFT synthesis of poly (vinylpyrrolidone) amine and preparation of a water-soluble C 60-PVP conjugate. Polymer Chemistry, 6(14), 2616–2619.CrossRefGoogle Scholar
  26. 26.
    Torchilin, V., Levchenko, T., Whiteman, K., Yaroslavov, A., Tsatsakis, A., Rizos, A., Michailova, E., & Shtilman, M. (2001). Amphiphilic poly-N-vinylpyrrolidones:: synthesis, properties and liposome surface modification. Biomaterials, 22(22), 3035–3044.CrossRefGoogle Scholar
  27. 27.
    Weng, L., Rostamzadeh, P., Nooryshokry, N., Le, H. C., & Golzarian, J. (2013). In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomaterialia, 9(6), 6823–6833.CrossRefGoogle Scholar
  28. 28.
    Le, T. N., Au-Duong, A. N., & Lee, C. K. (2019). Facile coating on microporous polypropylene membrane for antifouling microfiltration using comb-shaped poly (N-vinylpyrrolidone) with multivalent catechol. Journal of Membrane Science, 574, 164–173.Google Scholar
  29. 29.
    Kim, J., Chaudhury, M. K., Owen, M. J., & Orbeck, T. (2001). The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. Journal of Colloid and Interface Science, 244(1), 200–207.CrossRefGoogle Scholar
  30. 30.
    Mack, D., Becker, P., Chatterjee, I., Dobinsky, S., Knobloch, J. K. M., Peters, G., Rohde, H., & Herrmann, M. (2004). Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. International Journal of Medical Microbiology, 294(2–3), 203–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations