Advertisement

CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced l-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase

  • Jinjun Dong
  • Baojun Kan
  • Hui Liu
  • Milin Zhan
  • Shuxian Wang
  • Guochao Xu
  • Ruizhi Han
  • Ye NiEmail author
Article
  • 40 Downloads

Abstract

Here, Corynebacterium glutamicum SNK118 was metabolically engineered for l-ornithine production through CRISPR-Cpf1-based genome manipulation and plasmid-based heterologous overexpression. Genes argF, argR, and ncgl2228 were deleted to block the degradation of l-ornithine, eliminate the global transcriptional repression, and alleviate the competitive branch pathway, respectively. Overexpression of CsgapC (NADP-dependent glyceraldehyde 3-phosphate dehydrogenases gene from Clostridium saccharobutylicum DSM 13864) and BsrocG (NADH-dependent glutamate dehydrogenase gene from Bacillus subtilis HB-1) resulted markedly increased ornithine biosynthesis. Eventually, the engineered strain KBJ11 (SNK118ΔargRΔargFΔncgl2228/pXMJ19-CsgapC-BsrocG) was constructed for l-ornithine overproduction. In fed-batch fermentation, l-ornithine of 88.26 g/L with productivity of 1.23 g/L/h (over 72 h) and yield of 0.414 g/g glucose was achieved by strain KBJ11 in a 10-L bioreactor. Our result represents the highest titer and yield of l-ornithine production by microbial fermentation. This study suggests that heterologous expression of CsgapC and BsrocG could promote l-ornithine production by C. glutamicum strains.

Keywords

Corynebacterium glutamicum l-ornithine CRISPR-Cpf1 NADPH pool Glyceraldehyde-3-phosphate dehydrogenase 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (31601463), National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-07), National Key R&D Program (2018YFA0901700), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, and the Program of Introducing Talents of Discipline to Universities (111-2-06).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Salvatore, F., Cimino, F., d’Ayello-Caracciolo, M., & Cittadini, D. (1964). Mechanism of the protection by l-ornithine-l-aspartate mixture and by l-arginine in ammonia intoxication. Archives of Biochemistry and Biophysics, 107(3), 499–503.  https://doi.org/10.1016/0003-9861(64)90307-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Shi, H. P., Fishel, R. S., Efron, D. T., Williams, J. Z., Fishel, M. H., & Barbul, A. (2002). Effect of supplemental ornithine on wound healing. Journal of Surgical Research, 106(2), 299–302.  https://doi.org/10.1006/jsre.2002.6471.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee, Y. J., & Cho, J. Y. (2006). Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli. Biotechnology Letters, 28(22), 1849–1856.  https://doi.org/10.1007/s10529-006-9163-y.CrossRefPubMedGoogle Scholar
  4. 4.
    Shu, Q. F., Xu, M. J., Li, J., Yang, T. W., Zhang, X., Xu, Z. H., & Rao, Z. M. (2018). Improved l-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway. Journal of Industrial Microbiology & Biotechnology, 45(6), 393–404.  https://doi.org/10.1007/s10295-018-2037-1.CrossRefGoogle Scholar
  5. 5.
    Hwang, G. H., & Cho, J. Y. (2014). Enhancement of l-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. Journal of Industrial Microbiology & Biotechnology, 41(3), 573–578.  https://doi.org/10.1007/s10295-013-1398-8.CrossRefGoogle Scholar
  6. 6.
    Jiang, L. Y., Chen, S. G., Zhang, Y. Y., & Liu, J. Z. (2013). Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine. BMC Biotechnology, 13(1), 47–57.  https://doi.org/10.1186/1472-6750-13-47.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim, S. Y., Lee, J., & Lee, S. Y. (2015). Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnology and Bioengineering, 112(2), 416–421.  https://doi.org/10.1002/bit.25440.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, B., Yu, M., Wei, W. P., & Ye, B. C. (2018). Optimization of l-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway. Microbial Cell Factories, 17(1), 91.  https://doi.org/10.1186/s12934-018-0940-9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jiang, L. Y., Zhang, Y. Y., Li, Z., & Liu, J. Z. (2013). Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability. Journal of Industrial Microbiology & Biotechnology, 40(10), 1143–1151.  https://doi.org/10.1007/s10295-013-1306-2.CrossRefGoogle Scholar
  10. 10.
    Yang, J., Kim, B., Kim, H., Kweon, Y., & Lee, J. (2015). Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 176(8), 2303–2313.  https://doi.org/10.1007/s12010-015-1719-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, T., Zhu, N., & Xia, H. (2014). Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresource Technology, 151, 411–414.  https://doi.org/10.1016/j.biortech.2013.10.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu, W., Zheng, P., Yu, P., & Yang, Q. (2015). A two-stage process for succinate production using genetically engineered Corynebacterium acetoacidophilum. Process Biochemistry, 50(11), 1692–1700.  https://doi.org/10.1016/j.procbio.2015.07.017.CrossRefGoogle Scholar
  13. 13.
    Chen, C., Li, Y. Y., Hu, J. Y., Dong, X. Y., & Wang, X. Y. (2015). Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metabolic Engineering, 29, 66–75.  https://doi.org/10.1016/j.ymben.2015.03.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu, W. J., Zhang, Y., Liu, D. H., & Chen, Z. (2018). Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metabolic Engineering, 52, 77–86.  https://doi.org/10.1016/j.ymben.2018.11.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu, J. Z., Wu, Z. H., Gao, S. J., & Zhang, W. G. (2018). Rational modification of tricarboxylic acid cycle for improving l-lysine production in Corynebacterium glutamicum. Microbial Cell Factories, 17(1), 105.  https://doi.org/10.1186/s12934-018-0958-z.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang, J., Wen, B., Wang, J., Xu, Q. Y., Zhang, C. L., Chen, N., & Xie, X. X. (2013). Enhancing l-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 171(1), 20–30.  https://doi.org/10.1007/s12010-013-0321-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Park, S. H., Kim, H. U., Kim, T. Y., Park, J. S., Kim, S. S., & Lee, S. Y. (2014). Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications, 5, 4618.  https://doi.org/10.1038/ncomms5618.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu, M. J., Qin, J. R., Rao, Z. M., You, H. Y., Zhang, X., Yang, T. W., Wang, X. Y., & Xu, Z. H. (2016). Effect of polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microbial Cell Factories, 15, 15.  https://doi.org/10.1186/s12934-016-0414-x.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhan, M. L., Kan, B. J., Dong, J. J., Xu, G. C., Han, R. Z., & Ni, Y. (2019). Metabolic engineering of Corynebacterium glutamicum for improved l-arginine synthesis by enhancing NADPH supply. Journal of Industrial Microbiology & Biotechnology, 46(1), 45–54.  https://doi.org/10.1007/s10295-018-2103-8.CrossRefGoogle Scholar
  20. 20.
    Long, L., Guo, D. D., Gao, W., Yang, W. W., Hou, L. P., Ma, X. N., Miao, Y. C., Botella, J. R., & Song, C. P. (2018). Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 14(1), 85–89.  https://doi.org/10.1186/s13007-018-0353-0.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo, J. G., Li, K., Jin, L. F., Xu, R., Miao, K. T., Yang, F. B., Qi, C. Y., Zhang, L., Botella, J. R., Wang, R., & Miao, Y. C. (2018). A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods, 14, 40.  https://doi.org/10.1186/s13007-018-0305-8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang, L. L., Rubio, M. C., Xin, X., Zhang, B. L., Fan, Q. L., Wang, Q., Ning, G. G., Becana, M., & Duanmu, D. Q. (2019). CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytologist, 224(2), 818–832.  https://doi.org/10.1111/nph.16077.CrossRefPubMedGoogle Scholar
  23. 23.
    Gao, W., Long, L., Tian, X. Q., Xu, F. C., Liu, J., Singh, P. K., Botella, J. R., & Song, C. P. (2017). Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science, 8, 1364.  https://doi.org/10.3389/fpls.2017.01364.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pyne, M. E., Mooyoung, M., Chung, D. A., & Chou, C. P. (2015). Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 81(15), 5103–5114.  https://doi.org/10.1128/AEM.01248-15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang, H. Y., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918.  https://doi.org/10.1016/j.cell.2013.04.025.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiang, Y., Qian, F. H., Yang, J. J., Liu, Y. M., Dong, F., Xu, C. M., Sun, B. B., Chen, B., Xu, X. S., Li, Y., Wang, R. X., & Yang, S. (2017). CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 8, 15179.  https://doi.org/10.1038/ncomms15179.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, B., Ren, L. Q., Yu, M., Zhou, Y., & Ye, B. C. (2018). Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Bioresource Technology, 250, 60–68.  https://doi.org/10.1016/j.biortech.2017.11.017.CrossRefPubMedGoogle Scholar
  28. 28.
    Dong, J. J., Han, R. Z., Xu, G. C., Gong, L., Xing, W. R., & Ni, Y. (2018). Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 259, 40–45.  https://doi.org/10.1016/j.biortech.2018.02.098.CrossRefPubMedGoogle Scholar
  29. 29.
    Iddar, A., Valverde, F., Serrano, A., & Soukri, A. (2002). Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expression and Purification, 25(3), 519–526.  https://doi.org/10.1016/S1046-5928(02)00032-3.CrossRefPubMedGoogle Scholar
  30. 30.
    Belitsky, B. R., & Sonenshein, A. L. (1998). Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. Journal of Bacteriology, 180(23), 6298–6305.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gibson, D. G., Chuang, R. Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–345.  https://doi.org/10.1038/nmeth.1318.CrossRefPubMedGoogle Scholar
  32. 32.
    Van der Rest, M. E., Lange, C., & Molenaar, D. (1999). A heat shock following electroporation induces highly effcient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied Microbiology and Biotechnology, 52(4), 541–545.  https://doi.org/10.1007/s002530051557.CrossRefPubMedGoogle Scholar
  33. 33.
    Xu, D. Q., Tan, Y. Z., Huan, X. J., Hu, X. Q., & Wang, X. Y. (2010). Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. Journal of Microbiological Methods, 80(1), 86–92.  https://doi.org/10.1016/j.mimet.2009.11.003.CrossRefPubMedGoogle Scholar
  34. 34.
    Chernobrovkin, M. G., Anan’eva, I. A., Shapovalova, E. N., & Shpigun, O. A. (2004). Determination of amino acid enantiomers in pharmaceuticals by reversed-phase high-performance liquid chromatography. Journal of Analytical Chemistry, 59(1), 55–63.  https://doi.org/10.1023/B:JANC.0000011669.08932.d8.CrossRefGoogle Scholar
  35. 35.
    Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 67(1), 10–15.  https://doi.org/10.1016/0003-9861(57)90241-2.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang, B., Yu, M., Zhou, Y., Li, Y. X., & Ye, B. C. (2017). Systematic pathway engineering of Corynebacterium glutamicum S9114 for l-ornithine production. Microbial Cell Factories, 16(1), 158.  https://doi.org/10.1186/s12934-017-0776-8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Becker, J., Zelder, O., Häfner, S., Schröder, H., & Wittmann, C. (2011). From zero to hero—design-based systems metabolic engineering of l-lysine production. Metabolic Engineering, 13(2), 159–168.  https://doi.org/10.1016/j.ymben.2011.01.003.CrossRefPubMedGoogle Scholar
  38. 38.
    Takeno, S., Hori, K., Ohtani, S., Mimura, A., Mitsuhashi, S., & Ikeda, M. (2016). L-lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metabolic Engineering, 37, 1–10.  https://doi.org/10.1016/j.ymben.2016.03.007.CrossRefPubMedGoogle Scholar
  39. 39.
    Martínez, I., Zhu, J. F., Lin, H., Bennett, G. N., & San, K. Y. (2008). Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metabolic Engineering, 10(6), 352–359.  https://doi.org/10.1016/j.ymben.2008.09.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Jakoby, M., Ngouoto-Nkili, C. E., & Burkovski, A. (1999). Construction and application of new Corynebacterium glutamicum vectors. Biotechnology Techniques, 13(6), 437–441.  https://doi.org/10.1023/A:1008968419217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Guangxi BiorefineryNanningChina

Personalised recommendations