Enhanced Lipid Production in Yarrowia lipolytica Po1g by Over-expressing lro1 Gene under Two Different Promoters

  • Lita Amalia
  • Ya-Hui Zhang
  • Yi-Hsu Ju
  • Shen-Long TsaiEmail author


Yarrowia lipolytica is a well-known oleaginous yeast that naturally accumulates lipids to more than 20% of their dry cell weight. Due to its brief doubling time and Generally Recognized as Safe (GRAS) properties, Y. lipolytica has been exploited for the production of commercially valuable lipids. Among the genes related to the lipid synthesis, the gene YALI0E16797g (LRO1) encoding a major triacylglycerol synthase of Y. lipolytica shows a significant impact during the acylation process. Thus, in the present work, we explore the contributions of hp4d or TEFintron promoters to the response of LRO1 expression on lipid accumulation by molecular cloning technology. Results showed that over-expression of LRO1 led to higher lipid content as well as lipid yield. The one with the hp4d promoter showed the highest lipid content of 12% wt. However, such an enhancement also caused a growth defect of cells. On the other hand, the lipid content of the cells over-expressing LRO1 with TEFintron promoter revealed only a modest increase in lipid content, but it promoted cell growth. Therefore, all things considered the one with the TEFintron promoter showed the highest lipid yield.


Yarrowia lipolytica Lipid Biodiesel Promoter Phospholipid diacylglycerol acyltransferase 



This work was supported by the Ministry of Science and Technology, Taiwan (grant numbers MOST 107-2221-E-011-002-MY3 and MOST 105-2221-E-011 -002 -MY3).

Compliance with Ethical Standards

This article does not contain any studies involving human participants or animals performed by any of the authors. No informed consent.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Alper, H., & Stephanopoulos, G. (2009). Nature Reviews. Microbiology, 7, 715–723.CrossRefGoogle Scholar
  2. 2.
    Beopoulos, A., Nicaud, J. M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193–1206.CrossRefGoogle Scholar
  3. 3.
    Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101(19), 7201–7210.CrossRefGoogle Scholar
  4. 4.
    Windahl, K., Faxen Irving, G., Almquist, T., Liden, M. K., van de Luijtgaarden, M., Chesnaye, N. C., Voskamp, P., Stenvinkel, P., Klinger, M., Szymczak, M., Torino, C., Postorini, M., Drechsler, C., Caskey, F. J., Wanner, C., Dekker, F. W., Jager, K. J., & Evans, M. (2018). Journal of Renal Nutrition, 28, 165–174.CrossRefGoogle Scholar
  5. 5.
    Zhu, Q., & Jackson, E. N. (2015). Metabolic engineering of Yarrowia lipolytica for industrial applications. Current Opinion in Biotechnology, 36, 65–72.CrossRefGoogle Scholar
  6. 6.
    Gibellini, F., & Smith, T. K. (2010). IUBMB Life, 62, 414–428.CrossRefGoogle Scholar
  7. 7.
    Beopoulos, A., Chardot, T., & Nicaud, J. M. (2009). Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6), 692–696.CrossRefGoogle Scholar
  8. 8.
    Oelkers, P., Tinkelenberg, A., Erdeniz, N., Cromley, D., Billheimer, J. T., & Sturley, S. L. (2000). A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. The Journal of Biological Chemistry, 275(21), 15609–15612.CrossRefGoogle Scholar
  9. 9.
    Sorger, D., Athenstaedt, K., Hrastnik, C., & Daum, G. (2004). A yeast strain lacking lipid particles bears a defect in ergosterol formation. The Journal of Biological Chemistry, 279(30), 31190–31196.CrossRefGoogle Scholar
  10. 10.
    Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, S. (2000). Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6487–6492.CrossRefGoogle Scholar
  11. 11.
    Banas, A., Dahlqvist, A., Stahl, U., Lenman, M., & Stymne, S. (2000). The involvement of phospholipid:diacylglycerol acyltransferases in triacylglycerol production. Biochemical Society Transactions, 28(6), 703–705.CrossRefGoogle Scholar
  12. 12.
    Tai, M., & Stephanopoulos, G. (2013). Metabolic Engineering, 15, 1–9.CrossRefGoogle Scholar
  13. 13.
    Courchesne, N. M., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1-2), 31–41.CrossRefGoogle Scholar
  14. 14.
    Athenstaedt, K. (2011). YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Biochimica et Biophysica Acta, 1811(10), 587–596.CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Damude, H. G., & Yadav, N. S. (2012). Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. Yeast, 29(1), 25–38.CrossRefGoogle Scholar
  16. 16.
    Madzak, C., Treton, B., & Blanchin-Roland, S. (2000). Journal of Molecular Microbiology and Biotechnology, 2, 207–216.PubMedGoogle Scholar
  17. 17.
    Le Hir, H., Nott, A., & Moore, M. J. (2003). Trends in Biochemical Sciences, 28, 215–220.CrossRefGoogle Scholar
  18. 18.
    Nevoigt, E., Kohnke, J., Fischer, C. R., Alper, H., Stahl, U., & Stephanopoulos, G. (2006). Applied and Environmental Microbiology, 72, 5266–5273.CrossRefGoogle Scholar
  19. 19.
    Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81, 629–636.CrossRefGoogle Scholar
  20. 20.
    Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). Bioresource Technology, 129, 7–11.CrossRefGoogle Scholar
  21. 21.
    Papanikolaou, S., & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82(1), 43–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations