Advertisement

The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus

  • Tatsuya FujiiEmail author
  • Akinori Matsushika
Article
  • 58 Downloads

Abstract

Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.

Keywords

Talaromyces cellulolyticus Cellulase Hemicellulase Hap complex 

Notes

Acknowledgments

We thank the members of the Bio-Conversion group of AIST for helpful discussions.

Funding Information

This study was supported by Japan MEXT/JSPS KAKENHI Grant Number 26850058.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.Google Scholar
  2. 2.
    Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29(9), 419–425.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Biotechnology for Biofuels, 2, 24.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107(3), 256–261.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stricker, A., Grosstessner-Hain, K., Würleitner, E., & Mach, R. (2006). Eukaryotic Cell, 5, 2128–2137.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    van Peij, N., Gielkens, M., de Vries, R., Visser, J., & de Graaff, L. (1998). The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Applied and Environmental Microbiology, 64(10), 3615–3619.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Aro, N., Ilmen, M., Saloheimo, A., & Penttilä, M. (2003). Applied and Environmental Microbiology, 69, 56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aro, N., Saloheimo, A., Ilmen, M., & Penttilä, M. (2001). The Journal of Biological Chemistry, 276, 24309–24314.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., & Ogasawara, W. (2012). A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49(5), 388–397.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Seiboth, B., Karimi, R. A., Phatale, P. A., Linke, R., Hartl, L., Sauer, D. G., Smith, K. M., Baker, S. E., Freitag, M., & Kubicek, C. P. (2012). The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Molecular Microbiology, 84(6), 1150–1164.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yamakawa, Y., Endo, Y., Li, N., Yoshizawa, M., Aoyama, M., Watanabe, A., Kanamaru, K., Kato, M., & Kobayashi, T. (2013). Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochemical and Biophysical Research Communications, 431(4), 777–782.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kunitake, E., Tani, S., Sumitani, J., & Kawaguchi, T. (2012). Applied Microbiology and Biotechnology, 97, 2017–2028.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Coradetti, S. T., Craig, J. P., Xiong, Y., Shock, T., Tian, C., & Glass, N. L. (2012). Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7397–7402.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dowzer, C., & Kelly, J. (1989). Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Current Genetics, 15(6), 457–459.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ilmen, M., Onnela, M. L., Klemsdal, S., Keranen, S., & Penttilä, M. (1996). Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Molecular & General Genetics, 253(3), 303–314.Google Scholar
  16. 16.
    Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.CrossRefGoogle Scholar
  17. 17.
    Fujii, T., Inoue, H., & Ishikawa, K. (2013). AMB Express, 3, 73.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fujii, T., Inoue, H., & Ishikawa, K. (2014). Bioscience, Biotechnology, and Biochemistry, 78, 1564–1567.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fujii, T., Inoue, H., & Ishikawa, K. (2015). Decreased cellulase and xylanase production in the fungus Talaromyces cellulolyticus by disruption of tacA and tctA genes, encoding putative zinc finger transcriptional factors. Applied Biochemistry and Biotechnology, 175(6), 3218–3229.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fujii, T., Inoue, H., Ishikawa, K., & Hoshino, T. (2017). Deletion analysis of GH7 endoglucanase gene (cel7B) promoter region in a Talaromyces cellulolyticus ligD-Disrupted Strain. Applied Biochemistry and Biotechnology, 183(4), 1516–1525.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Guarente, L., Lalonde, B., Gifford, P., & Alani, E. (1984). Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell., 36(2), 503–511.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hortschansky, P., Haas, H., Huber, E. M., Groll, M., & Brakhage, A. A. (2017). The CCAAT-binding complex (CBC) in Aspergillus species. Biochimica et Biophysica Acta, 1860(5), 560–570.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Littlejohn, T. G., & Hynes, M. J. (1992). Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Molecular & General Genetics, 235(1), 81–88.CrossRefGoogle Scholar
  24. 24.
    Then Bergh, K., Litzka, O., & Brakhage, A. A. (1996). Journal of Bacteriology, 178, 3908–3916.CrossRefGoogle Scholar
  25. 25.
    Thön, M., Al Abdallah, Q., Hortschansky, P., Scharf, D. H., Eisendle, M., Haas, H., & Brakhage, A. A. (2010). The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Research, 38(4), 1098–1113.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hortschansky, P., Eisendle, M., Al Abdallah, Q., Schmidt, A. D., Bergmann, S., Thön, M., Kniemeyer, O., Abt, B., Seeber, B., Werner, E. R., Kato, M., Brakhage, A. A., & Haas, H. (2007). Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. The EMBO Journal, 26(13), 3157–3168.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Brakhage, A. A., Andrianopoulos, A., Kato, M., Steidl, S., Davis, M. A., Tsukagoshi, N., & Hynes, M. J. (1999). Fungal Genet. Biol., 27, 243–252.Google Scholar
  28. 28.
    Tanaka, A., Kato, M., Nagase, T., Kobayashi, T., & Tsukagoshi, N. (2002). Biochimica et Biophysica Acta, 1576, 176–182.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tsukagoshi, N., Kobayashi, T., & Kato, M. (2001). Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. The Journal of General and Applied Microbiology, 47(1), 1–19.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kato, M. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 663–672.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chen, H., & Kinsey, J. A. (1995). Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Molecular & General Genetics, 249(3), 301–308.CrossRefGoogle Scholar
  32. 32.
    Chen, H., Crabb, J. W., & Kinsey, J. A. (1998). The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5. Genetics., 148(1), 123–130.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zeilinger, S., Mach, R. L., & Kubicek, C. P. (1998). The Journal of Biological Chemistry, 273, 34463–34471.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zeilinger, S., Schmoll, M., Pail, M., Mach, R. L., & Kubicek, C. P. (2003). Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Molecular Genetics and Genomics, 270(1), 46–55.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ridenour, J. B., & Bluhm, B. H. (2014). Fungal Genet. Biol., 69, 52–64.Google Scholar
  36. 36.
    Inoue, H., Fujii, T., Yoshimi, M., Taylor 2nd., L. E., Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. Journal of Industrial Microbiology & Biotechnology, 40(8), 823–830.CrossRefGoogle Scholar
  37. 37.
    Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 245–249.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fujii, T., Murakami, K., & Sawayama, S. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 419–422.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Fujii, T., Koike, H., Sawayama, S., Yano, S., & Inoue, H. (2015). Genome Announcements, 26, 3.Google Scholar
  40. 40.
    Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. Journal of Bioscience and Bioengineering, 106(2), 115–120.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ilemen, M., Saloheimo, A., Onnela, M. L., & Penttila, M. E. (1997). Applied and Environmental Microbiology, 63, 1298–1306.Google Scholar
  42. 42.
    Nogawa, M., Goto, M., Okada, H., & Morikawa, Y. (2001). L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Current Genetics, 38(6), 329–334.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute for Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)HiroshimaJapan

Personalised recommendations