Advertisement

Effects of Excess and Limited Phosphate on Biomass, Lipid and Fatty Acid Contents and the Expression of Four Fatty Acid Desaturase Genes in the Tropical Selenastraceaen Messastrum gracile SE-MC4

  • Kaben Anne-Marie
  • Willy Yee
  • Saw Hong Loh
  • Ahmad Aziz
  • Thye San ChaEmail author
Article
  • 24 Downloads

Abstract

In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67–0.83 g L−1), oil content (30.99–38.08%) and the duration for cells to reach stationary phase (25–27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L−1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.

Keywords

Microalgae Fatty acid desaturase Nutrient starvation Biodiesel Phosphorus limitation 

Notes

Authors’ Contributions

TSC, KAM, AA and SHL conceived and designed the research; KAM conducted the experiments. TSC, KAM, WY, AA and SHL analysed and interpreted data. KAM and WY wrote the manuscript with guidance from TSC, AA and SHL. All authors read and approved the manuscript.

Funding Information

This research project was funded under the Science Fund (Project No: 05-01-12—SF1007) from the Ministry of Agriculture (MOA) Malaysia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology Biotechnology, 35(5), 421.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2, 759–766.CrossRefGoogle Scholar
  4. 4.
    Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration & Biodegradation, 85, 506–510.CrossRefGoogle Scholar
  5. 5.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tanabe, Y., Kato, S., Matsuura, H., & Watanabe, M. M. (2012). A Botryococcus strain with bacterial ectosymbionts grows fast and produces high amount of hydrocarbons. Procedia Environmental Sciences, 15, 22–26.CrossRefGoogle Scholar
  7. 7.
    Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, C., & Perales, J. A. (2014). Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Applied Biochemistry and Biotechnology, 174(4), 1471–1483.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jazzar, S., Berrejeb, N., Messaoud, C., Marzouki, M. N., & Smaali, I. (2016). Growth parameters, photosynthetic performance, and biochemical characterization of newly isolated green microalgae in response to culture condition variations. Applied Biochemistry and Biotechnology, 179(7), 1290–1308.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mohy El-Din, S. M. (2019). Accumulation of lipids and triglycerides in isochrysis galbana under nutrient stress. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-019-02997-0.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bogen, C., Klassen, V., Wichmann, J., Russa, M. L., Doebbe, A., Grundmann, M., Uronen, P., Kruse, O., & Mussgnug, J. H. (2013). Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology, 133, 622–626.PubMedCrossRefGoogle Scholar
  11. 11.
    Yee, W. (2016). Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review. World Journal of Microbiology and Biotechnology, 32, 64.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sipaúba-Tavares, L. H., Millan, R. N., Berchielli, F. A., & Braga, F. M. S. (2011). Use of alternative media and different types of recipients in a laboratory culture of Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyta). Acta Scientiarum Biological Sciences, 33, 247–253.CrossRefGoogle Scholar
  13. 13.
    Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135–1142.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607–4638.CrossRefGoogle Scholar
  15. 15.
    Ray, K., Mukherjee, C., & Gosh, A. N. (2013). A way to curb phosphorous toxicity in the environment: use of polyphosphate reservoir of cyanobacteria and microalga as a safe alternative phosphorous biofertilizer for Indian agriculture. Environmental Science & Technology, 47, 11378–11379.CrossRefGoogle Scholar
  16. 16.
    Yang, F., Xiang, W., Li, T., & Long, L. (2018). Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Scientific Reports, 8, 16420.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Reitan, K. I., Rainuzzo, J. R., & Olsen, Y. (1994). Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology, 30(6), 972–979.CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Yang, M., & Wang, C. (2013). Nutrient deprivation enhances lipid content in marine microalgae. Bioresource Technology, 147, 484–491.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ahmad, A., Osman, S. M., Cha, T. S., & Loh, S. H. (2016). Phosphate-induced changes in fatty acid biosynthesis in Chlorella sp. KS-MA2 strain. BioTechnologia, 97(4), 295–304.CrossRefGoogle Scholar
  20. 20.
    Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., & Soares, H. M. (2016). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 178(7), 1407–1419.PubMedCrossRefGoogle Scholar
  21. 21.
    Cha, T. S., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102, 10633–10640.PubMedCrossRefGoogle Scholar
  22. 22.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.PubMedCrossRefGoogle Scholar
  23. 23.
    Brembu, T., Mühlroth, A., Alipanah, L., & Bones, A. M. (2017). The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of Royal Society B, 372, 20160406.CrossRefGoogle Scholar
  24. 24.
    Solovchenko, A., Verschoor, A. M., Jablonowski, N. D., & Nedbal, L. (2016). Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnology Advances, 34(5), 550–564.PubMedCrossRefGoogle Scholar
  25. 25.
    Khozin-Golberg, I., & Cohen, Z. (2006). The effect of phosphate starvation and the lipid fatty acid composition of the freshwater eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701.CrossRefGoogle Scholar
  26. 26.
    Rocha, G. S., Parrish, C. C., Lombardi, A. T., & Melão, M. D. G. G. (2018). Biochemical and physiological responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus concentrations. Journal of Applied Phycology, 30(4), 2167–2177.CrossRefGoogle Scholar
  27. 27.
    Brown, N., & Shilton, A. (2014). Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Reviews in Environmental Science and Bio/Technology, 13(3), 321–328.CrossRefGoogle Scholar
  28. 28.
    Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorous concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp. Bioresource Technology, 101, 5494–5500.PubMedCrossRefGoogle Scholar
  29. 29.
    El-Khassas, H. Y. (2013). Growth and fatty acid profile on the marine microalga Picochlorum sp. grown under nutrient stress. Egyptian Journal of Aquatic Research, 39, 233–239.CrossRefGoogle Scholar
  30. 30.
    Ruangsomboon, S. (2012). Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Technology, 109, 261–265.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ruangsomboon, S., Ganmanee, M., & Choochote, S. (2013). Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. Journal of Applied Phycology, 25(3), 867–874.CrossRefGoogle Scholar
  32. 32.
    Roopnarain, A., Gray, V. M., & Sym, S. D. (2014). Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresource Technology, 156, 408–411.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Effect of phosphorous on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology, 25, 311–318.CrossRefGoogle Scholar
  34. 34.
    Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281–291.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Challagulla, V., Fabbro, L., & Nayar, S. (2015). Biomass, lipid productivity and fatty acid composition of fresh water microalga Rhopalosolen saccatus cultivated under phosphorous limited conditions. Algal Research, 8, 69–75.CrossRefGoogle Scholar
  36. 36.
    Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization and regulation in the response of plant to stress. Biotechnology Letters, 30(6), 967–977.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu, J., Sun, Z., Zhong, Y., Huang, J., Hu, Q., & Chen, F. (2012). Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta, 236(6), 1665–1676.PubMedCrossRefGoogle Scholar
  38. 38.
    Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 9, 14–20.CrossRefGoogle Scholar
  39. 39.
    Domergue, F., Spiekermann, P., Lerchl, J., Beckmann, C., Kilian, O., Kroth, P. G., Boland, W., Zähringer, U., & Heinz, E. (2003). New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiology, 131(4), 1648–1660.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Heppard, E. P., Kinney, A. J., Stecca, K. L., & Miao, G. H. (1996). Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiology, 110(1), 311–319.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., & Qin, S. (2009). Molecular cloning and stress-dependent expression of a gene encoding Δ 12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 13, 875.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jusoh, M., Loh, S. H., Chuah, T. S., Aziz, A., & Cha, T. S. (2015). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65–71.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jusoh, M., Loh, S. H., Aziz, A., & Cha, T. S. (2019). Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthesis genes in Chlorella vulgaris UMT-M1. Applied Biochemistry and Biotechnology, 188(2), 450–459.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional regulation of gene expression in plants during abiotic stress. International Journal of Molecular Sciences, 10(7), 3168–3185.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    O'Quin, J. B., Bourassa, L., Zhang, D., Shockey, J. M., Gidda, S. K., Fosnot, S., Chapman, K. D., Mullen, R. T., & Dyer, J. M. (2010). Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway. Journal of Biological Chemistry, 285, 21781–21796.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Shah, F. H., Rashid, O., & San, C. T. (2000). Temporal regulation of two isoforms of cDNA clones encoding delta 9-stearoyl-ACP desaturase from oil palm (Elaies guineensis). Plant Science, 152(1), 27–33.CrossRefGoogle Scholar
  47. 47.
    Mikkilineni, V., & Rocheford, T. (2003). Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics, 106(7), 1326–1332.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Vrinten, P., Hu, Z., Munchinsky, M. A., Rowland, G., & Qiu, X. (2005). Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiology, 139(1), 79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rajwade, A. V., Kadoo, N. Y., Borikar, S. P., Harsulkar, A. M., Ghorpade, P. B., & Gupta, V. S. (2014). Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. Phytochemistry, 98, 41–53.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Science and Marine EnvironmentUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  2. 2.Institute of Marine BiotechnologyUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations