Advertisement

Carbon-Phosphorus Lyase—the State of the Art

  • Natalia StosiekEmail author
  • Michał Talma
  • Magdalena Klimek-Ochab
Article
  • 55 Downloads

Abstract

Organophosphonates are molecules that contain a very chemically stable carbon-phosphorus (C-P) bond. Microorganisms can utilize phosphonates as potential source of crucial elements for their growth, as developed several pathways to metabolize these compounds. One among these pathways is catalyzed by C-P lyase complex, which has a broad substrate specifity; therefore, it has a wide application in degradation of herbicides deposited in the environment, such as glyphosate. This multi-enzyme system accurately recognized in Escherichia coli and genetic studies have demonstrated that it is encoded by phn operon containing 14 genes (phnC-phnP). The phn operon is a member of the Pho regulon induced by phosphate starvation. Ability to degradation of phosphonates is also found in other microorganisms, especially soil and marine bacteria, that have homologous genes to those in E. coli. Despite the existence of differences in structure and composition of phn gene cluster, each of these strains contains phnGHIJKLM genes necessary in the C-P bond cleavage mechanism. The review provides a detailed description and summary of achievements on the C-P lyase enzymatic pathway over the last 50 years.

Keywords

Phosphonates Phosphonate degradation C-P bond Carbon-phosphorus lyase complex Pho regulon phn operon 

Notes

Funding Information

The work was financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology. All molecular modeling studies and BLAST comparison were performed in BIOVIA Discovery Studio package.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3161_MOESM1_ESM.png (115 kb)
ESM 1 (PNG 115 kb)
12010_2019_3161_MOESM2_ESM.png (120 kb)
ESM 2 (PNG 119 kb)
12010_2019_3161_MOESM3_ESM.png (202 kb)
ESM 3 (PNG 202 kb)

References

  1. 1.
    Santos-Beneit, F. (2016). Frontiers in Microbiology, 6, 402.Google Scholar
  2. 2.
    Chin, J. P., McGrath, J. W., & Quinn, J. P. (2016). Current Opinion in Chemical Biology, 31, 50–57.Google Scholar
  3. 3.
    Young, C. L., & Ingall, E. D. (2010). Aquatic Geochemistry, 16(4), 563–574.CrossRefGoogle Scholar
  4. 4.
    Villarreal-Chiu, J. F., Quinn, J. P., & McGrath, J. W. (2012). Frontiers in Microbiology, 3, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kamat, S. S., Burgos, E. S., & Raushel, F. M. (2013a). Biochemistry, 52(42), 7366–7368.Google Scholar
  6. 6.
    Yakovleva, G. M., Kim, S. K., & Wanner, B. L. (1998). Applied Microbiology and Biotechnology, 49(5), 573–578.PubMedCrossRefGoogle Scholar
  7. 7.
    Nowack, B. (2003). Water research, 37(11), 2533–2546.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, K. S., Metcalf, W. W., & Wanner, B. L. (1992). Journal of Bacteriology, 174(8), 2501–2510.Google Scholar
  9. 9.
    Pipke, R., & Amrhein, N. (1988a). FEBS Letters, 236(1), 135–138.CrossRefGoogle Scholar
  10. 10.
    Metcalf, W. W., & Wanner, B. L. (1993a). Gene, 129(1), 27–32.Google Scholar
  11. 11.
    Kononova, S. V., & Nesmeyanova, M. A. (2002). Biochemistry (Moscow), 67(2), 184–195.Google Scholar
  12. 12.
    Ternan, N. G., Mc Grath, J. W., Mc, M. G., & Quinn, J. P. (1998). World Journal of Microbiology and Biotechnology, 14(5), 635–647.CrossRefGoogle Scholar
  13. 13.
    Ren, Z., Ranganathan, S., Zinnel, N. F., Russell, W. K., Russell, D. H., & Raushel, F. M. (2015). Biochemistry, 54(21), 3400–3411.Google Scholar
  14. 14.
    Klimek-Ochab, M. (2008). Current Trends in Microbiology, 4, 91.Google Scholar
  15. 15.
    Wanner B.L. (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, 41, 1357–1381.Google Scholar
  16. 16.
    Zeleznick, L., Myers, T. C., & Titchener, E. B. (1963). Biochimica et Biophysica Acta, 78(3), 546–547.PubMedCrossRefGoogle Scholar
  17. 17.
    Wackett, L. P., Wanner, B. L., Venditti, C., & Walsh, C. (1987b). Journal of Bacteriology, 169(4), 1753–1756.Google Scholar
  18. 18.
    Hsieh, Y. J., & Wanner, B. L. (2010). Current opinion in microbiology, 13(2), 198–203.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tetsch, L., & Jung, K. (2009). Molecular Microbiology, 73(6), 982–991.Google Scholar
  20. 20.
    Crépin, S., Chekabab, S. M., Le Bihan, G., Bertrand, N., Dozois, C. M., & Harel, J. (2011). Veterinary Microbiology, 153(1), 82–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Makino, K., Amemura, M., Kim, S. K., Nakata, A., & Shinagawa, H. (1994). Microbiology, 71(5), 497-511.Google Scholar
  22. 22.
    Hsieh, Y. J., & Wanner, B. L. (2012). Current Opinion in Microbiology, 13(2), 198–203.CrossRefGoogle Scholar
  23. 23.
    Kamat, S. S., & Raushel, F. M. (2013b). Current Opinion in Chemical Biology, 17(4), 589–596.Google Scholar
  24. 24.
    Makino, K., Shinagawa, H., Amemura, M., & Nakata, A. (1986a). Journal of Molecular Biology, 192(3), 549–556.Google Scholar
  25. 25.
    Makino, K., Shinagawa, H., Amemura, M., & Nakata, A. (1986b). Journal of Molecular Biology, 190(1), 37–44.Google Scholar
  26. 26.
    Lamarche, M. G., Wanner, B. L., Crépin, S., & Harel, J. (2008). FEMS Microbiology Reviews, 32(3), 461–473.Google Scholar
  27. 27.
    Wanner B.L. (1994a). Phosphate in microorganisms: cellular and molecular biology, ASM Press, Washington, DC, 12–21.Google Scholar
  28. 28.
    Van Dien, S. J., & Keasling, J. D. (1998). Journal of Theoretical Biology, 190(1), 37–49.Google Scholar
  29. 29.
    Surin, B. P., Rosenberg, H., & Cox, G. B. (1985). Journal of Bacteriology, 161(1), 189–198.Google Scholar
  30. 30.
    Schurdell, M. S., Woodbury, G. M., & McCleary, W. R. (2007). Journal of Bacteriology, 189(3), 1150–1153.Google Scholar
  31. 31.
    Chan, F. Y., & Torriani, A. (1996). Journal of Bacteriology, 178(13), 3974–3977.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Oganesyan, V., Oganesyan, N., Adams, P. D., Jancarik, J., Yokota, H. A., Kim, R., & Kim, S. H. (2005). Journal of Bacteriology, 187(12), 4238–4244.Google Scholar
  33. 33.
    Gardner, S. G., John, K. D., Tanner, R., & McCleary, W. R. (2014). Journal of Bacteriology, 196(9), 1741–1752.Google Scholar
  34. 34.
    Wilmes-Riesenberg, M. R., & Wanner, B. L. (1992). Journal of Bacteriology, 174(14), 4558–4575.Google Scholar
  35. 35.
    Baek, J. H., Kang, Y. J., & Lee, S. Y. (2007). FEMS Microbiology Letters, 277(2), 254–259.Google Scholar
  36. 36.
    Hoagland R.E. and Duke S.O. (1982). Biochemical effects of glyphosate (N-(phosphonomethyl) glycine)[Lemna, higher plants, phenylalanine ammonialyase]. In ACS symposium series American Chemical Society. Google Scholar
  37. 37.
    Williams, G. M., Kroes, R., & Munro, I. C. (2000). Regulatory Toxicology and Pharmacology, 31(2), 117–165.PubMedCrossRefGoogle Scholar
  38. 38.
    Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N., & Kabsch, W. (2001). Proceedings of the National Academy of Sciences, 98(4), 1376–1380.CrossRefGoogle Scholar
  39. 39.
    Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., & Nowak, K. M. (2016). Water Research, 99, 91–100.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhan, H., Feng, Y., Fan, X., & Che, S. (2018). Applied Microbiology and Biotechnology, 102(12), 5033–5043.Google Scholar
  41. 41.
    Balthazor, T. M., & Hallas, L. E. (1986). Applied and Environmental Microbiology, 51(2), 432–434.Google Scholar
  42. 42.
    Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., & Schaefer, J. (1988). Applied and Environmental Microbiology, 54(12), 2953–2958.Google Scholar
  43. 43.
    Pipke, R., & Amrhein, N. (1988b). Applied and Environmental Microbiology, 54(5), 1293–1296.Google Scholar
  44. 44.
    McAuliffe, K. S., Hallas, L. E., & Kulpa, C. F. (1990). Journal of Industrial Microbiology, 6(3), 219–221.CrossRefGoogle Scholar
  45. 45.
    Peñaloza-Vazquez, A., Mena, G. L., Herrera-Estrella, L., & Bailey, A. M. (1995). Applied and Environmental Microbiology, 61(2), 538–543.Google Scholar
  46. 46.
    Kishore, G. M., & Jacob, G. S. (1987). Journal of Biological Chemistry, 262(25), 12164–12168.Google Scholar
  47. 47.
    Pipke, R., Amrhein, N., Jacob, G. S., Schaefer, J., & Kishore, G. M. (1987). European Journal of Biochemistry, 165(2), 267–273.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Applied and Environmental Microbiology, 57(6), 1799–1804.Google Scholar
  49. 49.
    Nomura, N. S., & Hilton, H. W. (1977). Weed Research, 17(2), 113–121.CrossRefGoogle Scholar
  50. 50.
    Dick, R. E., & Quinn, J. P. (1995a). Applied Microbiology and Biotechnology, 43(3), 545–550.Google Scholar
  51. 51.
    Dick, R. E., & Quinn, J. P. (1995b). 4ASW. FEMS Microbiology Letters, 134(2-3), 177–182.CrossRefGoogle Scholar
  52. 52.
    Zechel, D. L. (2016). Structure, 24(1), 3–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Agarwal, V., Borisova, S. A., Metcalf, W. W., van der Donk, W. A., & Nair, S. K. (2001). Chemistry & Biology, 18(10), 1230–1240.CrossRefGoogle Scholar
  54. 54.
    Avila, L. Z., Loo, S. H., & Frost, J. W. (1987). Journal of the American Chemical Society, 109(22), 6758–6764.CrossRefGoogle Scholar
  55. 55.
    Frost, J. W., Loo, S., Cordeiro, M. L., & Li, D. (1987). Journal of the American Chemical Society, 109(7), 2166–2171.CrossRefGoogle Scholar
  56. 56.
    Wackett, L. P., Shames, S. L., Venditti, C. P., & Walsh, C. T. (1987a). Journal of Bacteriology, 169(2), 710–717.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Makino, K., Kim, S. K., Shinagawa, H., Amemura, M., & Nakata, A. (1991). Journal of Bacteriology, 173(8), 2665–2672.Google Scholar
  58. 58.
    Rizk, S. S., Cuneo, M. J., & Hellinga, H. W. (2006). Protein Science, 15(7), 1745–1751.Google Scholar
  59. 59.
    Kamat, S. S., Williams, H. J., & Raushel, F. M. (2011). Nature, 480(7378), 570–573.Google Scholar
  60. 60.
    Horsman, G. P., & Zechel, D. L. (2016). Chemical reviews, 117(8), 5704–5783.PubMedCrossRefGoogle Scholar
  61. 61.
    Hove-Jensen, B., Rosenkrantz, T. J., Haldimann, A., & Wanner, B. L. (2003). Journal of Bacteriology, 185(9), 2793–2801.Google Scholar
  62. 62.
    Hove-Jensen, B., McSorley, F. R., & Zechel, D. L. (2012). PloS One, 7(10), e46416.Google Scholar
  63. 63.
    Hove-Jensen, B., McSorley, F. R., & Zechel, D. L. (2011). Journal of the American Chemical Society, 133(10), 3617–3624.PubMedCrossRefGoogle Scholar
  64. 64.
    Hove-Jensen, B., Rosenkrantz, T. J., Zechel, D. L., & Willemoës, M. (2010). Journal of bacteriology, 192(1), 370–374.PubMedCrossRefGoogle Scholar
  65. 65.
    Avila, L. Z., Draths, K. M., & Frost, J. W. (1991). Bioorganic & Medicinal Chemistry Letters, 1(1), 51–54.CrossRefGoogle Scholar
  66. 66.
    Booker, S. J., & Grove, T. L. (2010). F1000 Biology Reports, 2, 52.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Podzelinska, K., He, S. M., Wathier, M., Yakunin, A., Proudfoot, M., Hove-Jensen, B., & Jia, Z. (2009). Journal of Biological Chemistry, 284(25), 17216–17226.Google Scholar
  68. 68.
    Ghodge, S. V., Cummings, J. A., Williams, H. J., & Raushel, F. M. (2013). Journal of the American Chemical Society, 135(44), 16360–16363.PubMedCrossRefGoogle Scholar
  69. 69.
    Vandepitte, V., & Verstraete, W. (1995). Biodegradation, 6(2), 157–165.CrossRefGoogle Scholar
  70. 70.
    Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M., & Raushel, F. M. (2013c). Nature, 497(7447), 132–136.Google Scholar
  71. 71.
    Hove-Jensen, B., Zechel, D. L., & Jochimsen, B. (2014). Microbiology and Molecular Biology Reviews, 78(1), 176–197.Google Scholar
  72. 72.
    Seweryn, P., Van, L. B., Kjeldgaard, M., Russo, C. J., Passmore, L. A., Hove-Jensen, B., & Brodersen, D. E. (2015). Nature, 525(7567), 68–72.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Horiguchi M. and Kandatstu M. (1959). Nature, 184(4690), 901–902.PubMedCrossRefGoogle Scholar
  74. 74.
    Kafarski P. and Mastalerz P. (1984). Aminophosphonates: natural occurrence, biochemistry and biological properties. Akademie-Industrie Komplex Arzneimitterforschung Institut fur Wirkstofforschung. Google Scholar
  75. 75.
    La Nauze, J. M., Rosenberg, H., & Shaw, D. C. (1970). Biochimica et Biophysica Acta (BBA)-Enzymology, 212(2), 332–350.CrossRefGoogle Scholar
  76. 76.
    Wanner, B. L., Wieder, S., & McSharry, R. (1981). Journal of Bacteriology, 146(1), 93–101.Google Scholar
  77. 77.
    Cordeiro, M. L., Pompliano, D. L., & Frost, J. W. (1986). Journal of the American Chemical Society, 108(2), 332–334.CrossRefGoogle Scholar
  78. 78.
    Shames, S. L., Wackett, L. P., LaBarge, M. S., Kuczkowski, R. L., & Walsh, C. T. (1987). Bioorganic Chemistry, 15(4), 366–373.CrossRefGoogle Scholar
  79. 79.
    Pipke, R., & Amrhein, N. (1988c). Applied and Environmental Microbiology, 54(11), 2868–2870.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Murata, K., Higaki, N., & Kimura, A. (1989). Journal of Bacteriology, 171(8), 4504–4506.Google Scholar
  81. 81.
    Chen, C. M., Ye, Q. Z., Zhu, Z. M., Wanner, B. L., & Walsh, C. T. (1990). Journal of Biological Chemistry, 265(8), 4461–4471.Google Scholar
  82. 82.
    Stern, M. J., Ames, G. F. L., Smith, N. H., Robinson, E. C., & Higgins, C. F. (1984). Cell, 37(3), 1015–1026.PubMedCrossRefGoogle Scholar
  83. 83.
    Metcalf, W. W., & Wanner, B. L. (1991). Journal of Bacteriology, 173(2), 587–600.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Iqbal, S., Parker, G., Davidson, H., Moslehi-Rahmani, E., & Robson, R. L. (2004). Journal of Bacteriology, 186(18), 6118–6123.Google Scholar
  85. 85.
    Kim, S. K., Makino, K., Amemura, M., Shinagawa, H., & Nakata, A. (1993). Journal of Bacteriology, 175(5), 1316–1324.Google Scholar
  86. 86.
    Metcalf, W. W., & Wanner, B. L. (1993b). Journal of Bacteriology, 175(11), 3430–3442.Google Scholar
  87. 87.
    Lee, K. S., & Kwak, I. Y. (1995). The Journal of Microbiology, 33(4), 328–333.Google Scholar
  88. 88.
    Matys, S. V., Laurinavichius, K. S., Krupyanko, V. I., & Nesmeyanova, M. A. (2001). Process Biochemistry, 36(8), 821–827.CrossRefGoogle Scholar
  89. 89.
    Matys, S. V., Kuzmina, N. M., Laurinavichius, K. S., & Nesmeyanova, M. A. (2004). Process Biochemistry, 39(9), 1063–1071.CrossRefGoogle Scholar
  90. 90.
    Kononova, S. V., Trutko, S. M., & Laurinavichus, K. S. (2007). Applied Biochemistry and Microbiology, 43(4), 394–398.CrossRefGoogle Scholar
  91. 91.
    Vetting, M. W., de Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., & Blanchard, J. S. (2005). Archives of Biochemistry and Biophysics, 433(1), 212–226.Google Scholar
  92. 92.
    Errey, J. C., & Blanchard, J. S. (2006). Biochemistry, 45(9), 3033–3039.Google Scholar
  93. 93.
    Adams, M. A., Luo, Y., Hove-Jensen, B., He, S. M., van Staalduinen, L. M., Zechel, D. L., & Jia, Z. (2008). Journal of Bacteriology, 190(3), 1072–1083.Google Scholar
  94. 94.
    Podzelinska, K., He, S., Soares, A., Zechel, D., Hove-Jensen, B., & Jia, Z. (2008). Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 64(6), 554–557.Google Scholar
  95. 95.
    Jochimsen, B., Lolle, S., McSorley, F. R., Nabi, M., Stougaard, J., Zechel, D. L., & Hove-Jensen, B. (2011). Proceedings of the National Academy of Sciences, 108(28), 11393–11398.CrossRefGoogle Scholar
  96. 96.
    He, S. M., Wathier, M., Podzelinska, K., Wong, M., McSorley, F. R., Asfaw, A., & Zechel, D. L. (2011). Biochemistry, 50(40), 8603–8615.PubMedCrossRefGoogle Scholar
  97. 97.
    Alicea, I., Marvin, J. S., Miklos, A. E., Ellington, A. D., Looger, L. L., & Schreiter, E. R. (2011). Journal of Molecular Biology, 414(3), 356–369.Google Scholar
  98. 98.
    Yang, K., Ren, Z., Raushel, F. M., & Zhang, J. (2016). Structure, 24(1), 37–42.Google Scholar
  99. 99.
    Gama, S., Vogt, M., Kalina, T., Hupp, K., Hammerschmidt, F., Pallitsch, K., Zechel, D. L. (2019). ACS chemical biology, 14(4), 735–741.PubMedCrossRefGoogle Scholar
  100. 100.
    Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez, A., & Delong, E. F. (2008). Nature Geoscience, 1(7), 473.CrossRefGoogle Scholar
  101. 101.
    Ulrich, E. C., Kamat, S. S., Hove-Jensen, B., & Zechel, D. L. (2018). Methods in enzymology, 605, 351–426, Academic Press.Google Scholar
  102. 102.
    Metcalf, W. W., Griffin, B. M., Cicchillo, R. M., Gao, J., Janga, S. C., Cooke, H. A., & Van Der Donk, W. A. (2012). Science, 337(6098), 1104–1107.Google Scholar
  103. 103.
    Dyhrman, S. T., Chappell, P. D., Haley, S. T., Moffett, J. W., Orchard, E. D., Waterbury, J. B., & Webb, E. A. (2006). Nature, 439(7072), 68–71.Google Scholar
  104. 104.
    Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., & Kishida, Y. (2001). DNA Research, 8(5), 205–213.PubMedCrossRefGoogle Scholar
  105. 105.
    Forlani, G., Pavan, M., Gramek, M., Kafarski, P., & Lipok, J. (2008). Plant and Cell Physiology, 49(3), 443–456.Google Scholar
  106. 106.
    Gomez-Garcia, M. R., Davison, M., Blain-Hartnung, M., Grossman, A. R., & Bhaya, D. (2011). The ISME Journal, 5(1), 141–149.PubMedCrossRefGoogle Scholar
  107. 107.
    Poehlein, A., Daniel, R., Schink, B., & Simeonova, D. D. (2013). BMC Genomics, 14(1), 1.CrossRefGoogle Scholar
  108. 108.
    Carini, P., White, A. E., Campbell, E. O., & Giovannoni, S. J. (2014). Nature Communications, 5, 4346.Google Scholar
  109. 109.
    Yao M., Henny C. and Maresca J.A. (2016) Applied and Environmental Microbiology 82(23), 6994–7003.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Moore, J. K., Braymer, H. D., & Larson, A. D. (1983). Applied and Environmental Microbiology, 46(2), 316–320.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Kertesz, M., Elgorriaga, A., & Amrhein, N. (1991). Biodegradation, 2(1), 53–59.PubMedCrossRefGoogle Scholar
  112. 112.
    Selvapandiyan, A., & Bhatnagar, R. K. (1994b). Applied Microbiology and Biotechnology, 40(6), 876–882.CrossRefGoogle Scholar
  113. 113.
    Selvapandiyan, A., & Bhatnagar, R. K. (1994a). Current Microbiology, 29(5), 255–261.CrossRefGoogle Scholar
  114. 114.
    Zboińska, E., Lejczak, B., & Kafarski, P. (1992). Applied and Environmental Microbiology, 58(9), 2993–2999.Google Scholar
  115. 115.
    Schowanek, D., & Verstraete, W. (1990). Applied and Environmental Microbiology, 56(4), 895–903.Google Scholar
  116. 116.
    Parker, G. F., Higgins, T. P., Hawkes, T., & Robson, R. L. (1999). Journal of Bacteriology, 181(2), 389–395.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Imazu, K., Tanaka, S., Kuroda, A., Anbe, Y., Kato, J., & Ohtake, H. (1998). Applied and Environmental Microbiology, 64(10), 3754–3758.Google Scholar
  118. 118.
    Quinn, J. P., Peden, J. M., & Dick, R. E. (1989). Applied Microbiology and Biotechnology, 31(3), 283–287.CrossRefGoogle Scholar
  119. 119.
    Obojska, A., Lejczak, B., & Kubrak, M. (1991). Applied Microbiology and Biotechnology, 51(6), 872–876.CrossRefGoogle Scholar
  120. 120.
    Obojska, A., & Lejczak, B. (2003). Applied Microbiology and Biotechnology, 62(5-6), 557–563.Google Scholar
  121. 121.
    White, A. K., & Metcalf, W. W. (2004). Journal of Bacteriology, 186(14), 4730–4739.Google Scholar
  122. 122.
    Vera, M., Pagliai, F., Guiliani, N., & Jerez, C. A. (2008). Applied and Environmental Microbiology, 74(6), 1829–1835.Google Scholar
  123. 123.
    Sviridov, A. V., Shushkova, T. V., Zelenkova, N. F., Vinokurova, N. G., Morgunov, I. G., Ermakova, I. T., & Leontievsky, A. A. (2012). Applied Microbiology and Biotechnology, 93(2), 787–796.Google Scholar
  124. 124.
    Sviridov, A. V., Zelenkova, N. F., Vinokurova, N. G., Ermakova, I. T., & Leontievsky, A. A. (2011). Biochemistry (Moscow), 76(6), 720–725.Google Scholar
  125. 125.
    Ermakova, I. T., Shushkova, T. V., Sviridov, A. V., Zelenkova, N. F., Vinokurova, N. G., Baskunov, B. P., & Leontievsky, A. A. (2017). Archives of microbiology, 199(5), 665–675.PubMedCrossRefGoogle Scholar
  126. 126.
    Selvi, A. A., & Manonmani, H. K. (2015).  Preparative Biochemistry and Biotechnology, 45(4), 380–397.Google Scholar
  127. 127.
    Zboińska, E., Maliszewska, I., Lejczak, B., & Kafarski, P. (1992). Letters in Applied Microbiology, 15(6), 269–272.CrossRefGoogle Scholar
  128. 128.
    Bujacz, B., Wieczorek, P., Krzysko-Lupicka, T., Golab, Z., Lejczak, B., & Kafarski, P. (1995). Applied and Environmental Microbiology, 61(8), 2905–2910.Google Scholar
  129. 129.
    Krzyśko-Lupicka, T., Strof, W., Kubś, K., Skorupa, M., Wieczorek, P., Lejczak, B., & Kafarski, P. (1997). Applied Microbiology and Biotechnology, 48(4), 549–552.PubMedCrossRefGoogle Scholar
  130. 130.
    Sailaja, K. K., & Satyaprasad, K. (2006). Journal of Environmental Science & Engineering, 48(3), 189–190.Google Scholar
  131. 131.
    Arfarita, N., Imai, T., Kanno, A., Higuchi, T., Yamamoto, K., & Sekine, M. (2011). Journal of Water and Environment Technology, 9(4), 391–400.CrossRefGoogle Scholar
  132. 132.
    McMullan, G., Watkins, R., Harper, D. B., & Quinn, J. P. (1991). Biochemistry International, 25(2), 271–279.Google Scholar
  133. 133.
    Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leontievsky, A. A. (2015). Applied Biochemistry and Microbiology, 51(2), 188–195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioorganic Chemistry, Faculty of ChemistryWroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations