Advertisement

Bovine Endometritis and the Inflammatory Peripheral Cholinergic System

  • Lucas Carvalho SiqueiraEmail author
  • Bruna Favaretto
  • Bibiana Teló Moraes
  • Vanessa Oliveira de Freitas
  • Rodrigo Carvalho Bicalho
  • Roberta Cattaneo Horn
  • Daniele Mariath Bassuino
  • Patricia Wolkmer
Article
  • 40 Downloads

Abstract

Endometritis is an inflammation of the endometrium associated with bacterial infection. The pathogenesis of endometritis in cows is still not completely understood. The combined analysis of the markers of inflammation and oxidative stress has contributed to a better understanding of disease mechanisms, but is still unexplored in uterine disorders. Moreover, research provides evidence about an important role of the vagus nerve in regulating the innate immune function through the cholinergic anti-inflammatory pathway in response to bacterial infections. This new pathway has demonstrated a critical role in controlling the inflammatory system. The aim of this study was to evaluate the activity of cholinesterase in total blood, lymphocytes, and serum of dairy cows with clinical and subclinical endometritis. Sixty-one Holstein cows, between 30 and 45 days in milk, were classified into 3 groups of animals: presenting clinical endometritis (n = 22), subclinical endometritis (n = 17), and healthy (n = 22). Mean leukocyte counts did not differ among groups, but the neutrophil number was significantly higher in cows with clinical endometritis than those in healthy animals. Also, serum concentration of interleukin-1beta (pg/mL) was significantly higher in cows with endometritis. The activity of acetylcholinesterase in blood and lymphocytes increased in both groups with endometritis. Animals with endometritis presented an increase in lipid peroxidation, but the antioxidant enzyme activity (catalase levels) was higher in endometritis groups than in normal cows. In conclusion, the inflammatory process of clinical and subclinical endometritis leads to systemic lipid peroxidation despite the compensatory increase of the antioxidant enzyme. These data also provide evidence of an important role of the cholinergic pathway in regulating dairy cows with clinical and subclinical endometritis.

Keywords

Uterine disease Dairy cows Acetylcholinesterase Butyrylcholinesterase 

Notes

Acknowledgments

We are thankful to the Secretary of Economic Development, Science and Technology of the state of Rio Grande do Sul (SDECT-RS) and the Center of Technological Innovation of Alto Jacuí (Inovatec).

Compliance with Ethical Standards

Conflict of interest

The authors state that they have no conflict of interest to declare. The procedure was approved by the Animal Welfare Committee of UNICRUZ, number 07/2017, in accordance to Brazilian laws and ethical principles published by the Colégio Brasileiro de Experimentação Animal (COBEA).

All authors agreed with the subscription of the article.

References

  1. 1.
    Sheldon, I. M., Cronin, J. G., & Bromfield, J. J. (2018). Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annual Review of Animal Biosciences., 7(1), 361–384.  https://doi.org/10.1146/annurev-animal-020518-115227.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sheldon, I. M., Lewis, G. S., LeBlanc, S., & Gilbert, R. O. (2006). Defining postpartum uterine disease in cattle. Theriogenology., 65(8), 1516–1530.  https://doi.org/10.1016/j.theriogenology.2005.08.021.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sheldon, I. M., & Owens, S. E. (2017). Postpartum uterine infection and endometritis in dairy cattle. Animal Reproduction, 14(3), 622–629.  https://doi.org/10.21451/1984-3143-ar1006.CrossRefGoogle Scholar
  4. 4.
    Azawi, O. I. (2008). Postpartum uterine infection in cattle. Animal Reproduction Science.  https://doi.org/10.1016/j.anireprosci.2008.01.010.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sheldon, M., Cronin, J., Goetze, L., Donofrio, G., & Schuberth, H. (2009). Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biology of reproduction.  https://doi.org/10.1095/biolreprod.109.077370.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wagener, K., Gabler, C., & Drillich, M. (2017). A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2017.02.005.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    da Silva, A. S., de Andrade Neto, O. A. S., Costa, M. M., Wolkmer, P., Mazzantti, C. M., Santurio, J. M., … Monteiro, S. G. (2010). Trypanosomosis in equines in southern Brazil. Acta Scientiae Veterinariae, 38(2).Google Scholar
  8. 8.
    Kasimanickam, R., Duffield, T. F., Foster, R. A., Gartley, C. J., Leslie, K. E., Walton, J. S., & Johnson, W. H. (2004). Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2003.03.001.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S., & Leblanc, S. J. (2010). Definitions and diagnosis of postpartum endometritis in dairy cows. Journal of Dairy Science.  https://doi.org/10.3168/jds.2010-3428.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Madoz, L. V., Giuliodori, M. J., Migliorisi, A. L., Jaureguiberry, M., & De Sota, R. L. (2014). Endometrial cytology , biopsy , and bacteriology for the diagnosis of subclinical endometritis in grazing dairy cows. Journal of Dairy Science.  https://doi.org/10.3168/jds.2013-6836.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gilbert, R. O., Shin, S. T., Guard, C. L., Erb, H. N., & Frajblat, M. (2005). Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2005.04.022.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Leblanc, S. J., Duffield, T. F., Leslie, K. E., Bateman, K. G., Keefe, G. P., Walton, J. S., & Johnson, W. H. (2002). Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci.  https://doi.org/10.3168/jds.S0022-0302(02)74302-6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Carneiro, L. C., Ferreira, A. F., Padua, M., Saut, J. P., Ferraudo, A. S., & dos Santos, R. M. (2014). Incidence of subclinical endometritis and its effects on reproductive performance of crossbred dairy cows. Tropical Animal Health and Production., 46(8), 1435–1439.  https://doi.org/10.1007/s11250-014-0661-y.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schaefer, T. M., Desouza, K., Fahey, J. V., Beagley, K. W., & Wira, C. R. (2004). Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology.  https://doi.org/10.1111/j.1365-2567.2004.01898.x.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Herath, S., Fischer, D. P., Werling, D., Williams, E. J., Lilly, S. T., Dobson, H., et al. (2006). Expression and function of toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology.  https://doi.org/10.1210/en.2005-1113.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Reddy, S. P., Tran, K., Malik, A. B., Siddiqui, M. R., & Mittal, M. (2013). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling.  https://doi.org/10.1089/ars.2012.5149.CrossRefGoogle Scholar
  17. 17.
    Mittal, M., Siddiqui, M., Tran, K., Reddy, S., & Malik, A. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling.  https://doi.org/10.1371/journal.pbio.1000479.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nita, M., & Grzybowski, A. (2016). The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity.  https://doi.org/10.1155/2016/3164734.CrossRefGoogle Scholar
  19. 19.
    Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications.  https://doi.org/10.1016/j.bbrc.2016.10.086.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bandyopadhyay, U., Das, D., & Banerjee, R. K. (1999). Reactive oxygen species: oxidative damage and pathogenesis. Current Science.Google Scholar
  21. 21.
    Pavlov, V. A., & Tracey, K. J. (2006). Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochemical Society Transactions.  https://doi.org/10.1042/bst0341037.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews Immunology.  https://doi.org/10.1038/nri2566.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang, H., Yu, M., Ochani, M., Amelia, C. A., Tanovic, M., Susarla, S., et al. (2003). Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature.  https://doi.org/10.1038/nature01339.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Rosas-Ballina, M., & Tracey, K. J. (2009). Cholinergic control of inflammation. In Journal of Internal Medicine.  https://doi.org/10.1111/j.1365-2796.2009.02098.x.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Czura, C. J., & Tracey, K. J. (2013). The cholinergic anti-inflammatory pathway. In Autonomic Neuroimmunology.  https://doi.org/10.3109/9780203008966.
  26. 26.
    Martelli, D., McKinley, M. J., & McAllen, R. M. (2014). The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience: Basic and Clinical.  https://doi.org/10.1016/j.autneu.2013.12.007.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gallowitsch-Puerta, M., & Pavlov, V. A. (2007). Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sciences.  https://doi.org/10.1016/j.lfs.2007.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kawashima, K., & Fujii, T. (2003). The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sciences.  https://doi.org/10.1016/j.lfs.2003.09.037.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Pavlov, V. A., & Tracey, K. J. (2004). Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences.  https://doi.org/10.1007/s00018-004-4102-3.
  30. 30.
    Taylor, P. (1991). The cholinesterases. Journal of Biological Chemistry.Google Scholar
  31. 31.
    Das, U. N. (2007). Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Annals of Hepatology.Google Scholar
  32. 32.
    Blusztajn, J. K., & Wurtman, R. J. (1983). Choline and cholinergic neurons. Science.  https://doi.org/10.1126/science.6867732.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Patocka, J., Kuca, K., & Jun, D. (2004). Acetylcholinesterase and butyrylcholinesterase—important enzymes of human body. Acta medica (Hradec Kralove).Google Scholar
  34. 34.
    Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature.  https://doi.org/10.1038/35013070.PubMedCrossRefGoogle Scholar
  35. 35.
    Tracey, K. J., Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature.  https://doi.org/10.1038/35013070.PubMedCrossRefGoogle Scholar
  36. 36.
    de Jonge, W. J., van der Zanden, E. P., The, F. O., Bijlsma, M. F., van Westerloo, D. J., Bennink, R. J., et al. (2005). Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology.  https://doi.org/10.1038/ni1229.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramírez, M. J., Cenarruzabeitia, E., Lasheras, B., & Del Rio, J. (1997). 5-HT2receptor regulation of acetylcholine release induced by dopaminergic stimulation in rat striatal slices. Brain Research.  https://doi.org/10.1016/S0006-8993(96)01434-5.PubMedCrossRefGoogle Scholar
  38. 38.
    Arne Boyum. (1968). Isolation of mononuclear cells and granulocytes from human blood. Scand. J. C/in. Lab. Invest.Google Scholar
  39. 39.
    Jain, N. C. (Nemi C. (1993). Essentials of veterinary hematology. Published in 1993 in Philadelphia (Pa.) by Lea and Febiger.Google Scholar
  40. 40.
    Ellman, L. G., Courtney, K. D., Andres, V., & Featherstone, M. R. (1961). A new and rapid colorimetric of acetylcholinesterase determination. Biochemical Pharmacology.Google Scholar
  41. 41.
    Worek, F., Mast, U., Kiderlen, D., Diepold, C., & Eyer, P. (1999). Improved determination of acetylcholinesterase activity in human whole blood. Clinica Chimica Acta.  https://doi.org/10.1016/S0009-8981(99)00144-8.CrossRefGoogle Scholar
  42. 42.
    Fitzgerald, B. B., & Costa, L. G. (1993). Modulation of muscarinic receptors and acetylcholinesterase activity in lymphocytes and in brain areas following repeated organophosphate exposure in rats. Toxicological Sciences.  https://doi.org/10.1093/toxsci/20.2.210.CrossRefGoogle Scholar
  43. 43.
    Jentzsch, A. M., Bachmann, H., Fürst, P., & Biesalski, H. K. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine.  https://doi.org/10.1016/0891-5849(95)02043-8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nelson, D. P., & Kiesow, L. A. (1972). Enthalpy of decomposition of hydrogen peroxide by catalase at 25?? C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 49(2), 474–478.  https://doi.org/10.1016/0003-2697(72)90451-4.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    KIM, I.-H., NA, K.-J., & YANG, M.-P. (2006). Immune responses during the peripartum period in dairy cows with postpartum endometritis. Journal of Reproduction and Development.  https://doi.org/10.1262/jrd.17036.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Subandrio, A. L., Sheldon, I. M., & Noakes, D. E. (2000). Peripheral and intrauterine neutrophil function in the cow: the influence of endogenous and exogenous sex steroid hormones. Theriogenology.  https://doi.org/10.1016/S0093-691X(00)00300-9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Subandrio, A., & Noakes, D. (1997). Neutrophil migration into the uterine lumen of the cow: the influence of endogenous and exogenous sex steroid hormones using two intrauterine chemoattractants. Theriogenology.  https://doi.org/10.1016/S0093-691X(97)00038-1.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Castro, V. S. P., Da Silva, A. S., Costa, M. M., Paim, F. C., Alves, S. H., Lopes, S. T. A., et al. (2016). Cholinergic enzymes and inflammatory markers in rats infected by Sporothrix schenckii. Microbial Pathogenesis, 97.  https://doi.org/10.1016/j.micpath.2016.05.020.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kim, I. H., Kang, H. G., Jeong, J. K., Hur, T. Y., & Jung, Y. H. (2014). Inflammatory cytokine concentrations in uterine flush and serum samples from dairy cows with clinical or subclinical endometritis. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2014.04.022.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Galvão, K. N., Santos, N. R., Galvão, J. S., & Gilbert, R. O. (2011). Association between endometritis and endometrial cytokine expression in postpartum Holstein cows. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2011.02.006.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Cybulsky, M. I., Colditz, I. G., & Movat, H. Z. (1986). The role of interleukin-1 in neutrophil leukocyte emigration induced by endotoxin. Am J Pathol.Google Scholar
  52. 52.
    Tracey, K. J. (2002). The inflammatory reflex. Nature.  https://doi.org/10.1038/nature01321.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., et al. (2004). Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine.  https://doi.org/10.1038/nm1124.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ulloa, L. U. I. S. (2010). Cholinergic regulation of NF-kB in sepsis. RePORTER Database National Institutes of Health.Google Scholar
  55. 55.
    Li, B., Stribley, J. A., Ticu, A., Xie, W., Schopfer, L. M., Hammond, P., … Lockridge, O. (2000). Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. Journal of neurochemistry.Google Scholar
  56. 56.
    Ben Assayag, E., Shenhar-Tsarfaty, S., Ofek, K., Soreq, L., Bova, I., Shopin, L., et al. (2010). Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Molecular medicine (Cambridge, Mass.).  https://doi.org/10.2119/molmed.2010.00015.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tayebati, S. K., El-Assouad, D., Ricci, A., & Amenta, F. (2002). Immunochemical and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. Journal of Neuroimmunology.  https://doi.org/10.1016/S0165-5728(02)00325-9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kawashima, K., & Fujii, T. (2004). Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience.  https://doi.org/10.2741/1390.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fujii, T., Mashimo, M., Moriwaki, Y., Misawa, H., Ono, S., Horiguchi, K., & Kawashima, K. (2017). Expression and function of the cholinergic system in immune cells. Frontiers in Immunology.  https://doi.org/10.3389/fimmu.2017.01085.
  60. 60.
    Kawashima, K., & Fujii, T. (2000). Extraneuronal cholinergic system in lymphocytes. Pharmacology and Therapeutics.  https://doi.org/10.1016/S0163-7258(99)00071-6.CrossRefGoogle Scholar
  61. 61.
    Hammon, D. S., Evjen, I. M., Dhiman, T. R., Goff, J. P., & Walters, J. L. (2006). Neutrophil function and energy status in Holstein cows with uterine health disorders. Veterinary Immunology and Immunopathology.  https://doi.org/10.1016/j.vetimm.2006.03.022.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sheldon, I. M., & Dobson, H. (2004). Postpartum uterine health in cattle. In Animal Reproduction Science.  https://doi.org/10.1016/j.anireprosci.2004.04.006.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Teng, T.-S., Ji, A., Ji, X.-Y., & Li, Y.-Z. (2017). Neutrophils and immunity: from bactericidal action to being conquered. Journal of Immunology Research.  https://doi.org/10.1155/2017/9671604.CrossRefGoogle Scholar
  64. 64.
    LeBlanc, S. J., Osawa, T., & Dubuc, J. (2011). Reproductive tract defense and disease in postpartum dairy cows. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2011.07.017.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Parrilla-Hernandez, S., Ponthier, J. Ô., Franck, T. Y., Serteyn, D. D., & Deleuze, S. C. (2014). High concentrations of myeloperoxidase in the equine uterus as an indicator of endometritis. Theriogenology.  https://doi.org/10.1016/j.theriogenology.2014.01.011.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    El-Benna, J., Dang, P. M. C., Gougerot-Pocidalo, M. A., Marie, J. C., & Braut-Boucher, F. (2009). p47phox, the phagocyte NADPH oxidase/NOX2 organizer: Structure, phosphorylation and implication in diseases. Experimental and Molecular Medicine.  https://doi.org/10.3858/emm.2009.41.4.058.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lykkesfeldt, J., & Svendsen, O. (2007). Oxidants and antioxidants in disease: Oxidative stress in farm animals. Veterinary Journal.  https://doi.org/10.1016/j.tvjl.2006.06.005.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chihuailaf, R. H., Contreras, P. A., & Wittwer, F. G. (2002). Patogénesis del estrés oxidativo : consecuencias y evaluación en salud animal. Veterinaria México.Google Scholar
  69. 69.
    Yu, B. P. (2017). Cellular defenses against damage from reactive oxygen species. Physiological Reviews.  https://doi.org/10.1152/physrev.1994.74.1.139.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Martinez, G. R., Loureiro, A. P. M., Marques, S. A., Miyamoto, S., Yamaguchi, L. F., Onuki, J., et al. (2003). Oxidative and alkylating damage in DNA. In Mutation Research - Reviews in Mutation Research.  https://doi.org/10.1016/j.mrrev.2003.05.005.CrossRefGoogle Scholar
  71. 71.
    Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine.  https://doi.org/10.1016/j.freeradbiomed.2009.12.022.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ighodaro, O. M., & Akinloye, O. A. (2017). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine.  https://doi.org/10.1016/j.ajme.2017.09.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Veterinary MedicineUniversity of Cruz Alta (UNICRUZ)Cruz AltaBrazil
  2. 2.Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations