Nanotechnological Applications Hold a Pivotal Position in Boosting Stem Cells Osteogenic Activity: In Vitro and In Vivo Studies

  • Hadeer A. AglanEmail author
  • Hanaa H. Ahmed
  • Nadia S. Mahmoud
  • Riham M. Aly
  • Naglaa A. Ali
  • Ahmed A. Abd-Rabou


This approach was constructed to appraise the therapeutic effectiveness of a single i.v. dose of osteoblasts generated from co-culturing BM-MSCs with nano-HA, Pt-NPs, or Pt-HA-nanocomposite in osteoporotic rats. MSCs were grown, propagated in culture, and characterized. The effect of the suggested nanoplatforms on the survival, osteogenic differentiation, and mineralization of BM-MSCs was assessed by MTT assay, real-time PCR analysis, and Alizarin red S staining, respectively. Thereafter, the generated osteoblasts were employed for the treatment of ovariectomized rats. Our results revealed that the selected nanoplatforms upregulate the expression of osteogenic differentiation related genes (Runx-2 and BMP-2) significantly and enhance calcium deposition in BM-MSCs after 7 and 21 days, respectively, whereas the in vivo study validated that the infusion of the generated osteoblasts considerably downturn serum BALP, BSP, and SOST levels; upswing OSX level; and regain femur bone mineralization and histoarchitecture. Conclusively, the outcomes of this work provide scientific evidence that transplanting osteoblasts derived from differentiation of BM-MSCs in the presence of nanoplatforms in ovariectomized rats restores bone remodeling balance which constitutes a new hope for the treatment of osteoporosis.


Osteoporosis Bone marrow mesenchymal stem cell Nanoplatforms Osteoblast In vitro In vivo 



Bone alkaline phosphatase


Bone marrow derived mesenchymal stem cells


Bone morphogenetic protein 2


Bone sialoprotein






Platinum nanoparticles




Runt-related transcription factor 2





The authors gratefully acknowledge the financial support of the National Research Centre, Egypt (Grant no. P100528) and the technical support of the Science and Technology Development Fund (STDF), Egypt, through Capacity Building program (Grant no. 4880). Also, the authors express sincere appreciation to Prof. Adel Bakeer kholoussy, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University for his kind cooperation in conducting histological examination in this study.


This work was financially supported by the National Research Centre, Egypt (grant no. P100528).

Compliance with Ethical Standards

This study was conducted in strict accordance with the recommendations of the guidelines for the care and use of laboratory animals of the National Research Centre, Egypt. The experimental procedures were endorsed by the Ethical Committee of Medical Research of National Research Centre, Giza, Egypt (Admittance code 15 - 154).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aghebati-Maleki, L., Dolati, S., Zandi, R., Fotouhi, A., Ahmadi, M., Aghebati, A., Nouri, M., Kazem Shakouri, S., & Yousefi, M. (2018). Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. Journal of Cellular Physiology, 234(6), 8570–8578. Scholar
  2. 2.
    Facts and Statistics | International Osteoporosis Foundation. (n.d.). Retrieved March 19, 2019, from
  3. 3.
    Korpi-Steiner, N., Milhorn, D., & Hammett-Stabler, C. (2014). Osteoporosis in men. Clinical Biochemistry, 47(10–11), 950–959. Scholar
  4. 4.
    El-Said Hossien, Y. (2014). Osteoporosis knowledge among female adolescents in Egypt. American Journal of Nursing Science, 3(2), 13. Scholar
  5. 5.
    Lin, X., Xiong, D., Peng, Y. Q., Sheng, Z. F., Wu, X. Y., Wu, X. P., et al. (2015). Epidemiology and management of osteoporosis in the people’s republic of China: Current perspectives. Clinical Interventions in Aging, 10, 1017–1033. Scholar
  6. 6.
    Knopp-Sihota, J. A., Cummings, G. G., Homik, J., & Voaklander, D. (2013). The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: A population-based nested cohort study. BMC Geriatrics, 13(1), 110–120. Scholar
  7. 7.
    Zhang, Y., Luo, H., Zhang, Z., Lu, Y., Huang, X., Yang, L., Xu, J., Yang, W., Fan, X., du, B., Gao, P., Hu, G., & Jin, Y. (2010). A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials, 31(20), 5312–5324. Scholar
  8. 8.
    Hu, L., Yin, C., Zhao, F., Ali, A., Ma, J., & Qian, A. (2018). Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. International Journal of Molecular Sciences, 19(2), 360. Scholar
  9. 9.
    Ichioka, N., Inaba, M., Kushida, T., Esumi, T., Takahara, K., Inaba, K., Ogawa, R., Iida, H., & Ikehara, S. (2002). Prevention of senile osteoporosis in SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells. Stem Cells, 20(6), 542–551. Scholar
  10. 10.
    Wang, Z., Goh, J., De, S. D., Ge, Z., Ouyang, H., Sue, J., et al. (2006). Efficacy of bone marrow–derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Engineering, 12(7), 1753–1761. Scholar
  11. 11.
    Gutwald, R., Haberstroh, J., Kuschnierz, J., Kister, C., Lysek, D. A., Maglione, M., Xavier, S. P., Oshima, T., Schmelzeisen, R., & Sauerbier, S. (2010). Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation: Comparison with augmentation by autologous bone in adult sheep. British Journal of Oral and Maxillofacial Surgery, 48(4), 285–290. Scholar
  12. 12.
    Granero-Moltó, F., Weis, J. A., Miga, M. I., Landis, B., Myers, T. J., O’Rear, L., et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 27(8), 1887–1898. Scholar
  13. 13.
    Tautzenberger, A., Kovtun, A., & Ignatius, A. (2012). Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 7, 4545–4557. Scholar
  14. 14.
    Roohani-Esfahani, S. I., Nouri-Khorasani, S., Lu, Z., Appleyard, R., & Zreiqat, H. (2010). The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials, 31(21), 5498–5509. Scholar
  15. 15.
    Yin, Z., Chen, X., Chen, J. L., Shen, W. L., Hieu Nguyen, T. M., Gao, L., & Ouyang, H. W. (2010). The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 31(8), 2163–2175. Scholar
  16. 16.
    Oh, S., Brammer, K. S., Li, Y. S. J., Teng, D., Engler, A. J., Chien, S., et al. (2009). Stem cell fate dictated solely by altered nanotube dimension. P Natl Acad Sci USA, 160(24), 60.Google Scholar
  17. 17.
    Amna, T. (2018). Valorization of bone waste of Saudi Arabia by synthesizing hydroxyapatite. Applied Biochemistry and Biotechnology, 186(3), 779–778. Scholar
  18. 18.
    Heo, S.-J., Kim, S.-E., Wei, J., Kim, D. H., Hyun, Y.-T., Yun, H.-S., Kim, H. K., Yoon, T. R., Kim, S. H., Park, S. A., Shin, J. W., & Shin, J.-W. (2009). In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue engineering. Part A, 15(5), 977–989. Scholar
  19. 19.
    Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Sech, C. L., & Lacombe, S. (2010). Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology, 21, 085103. Scholar
  20. 20.
    Park, E. J., Kim, H., Kim, Y., Yi, J., Choi, K., & Park, K. (2010). Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology, 275(1–3), 65–71. Scholar
  21. 21.
    Yoshihisa, Y., Honda, A., Zhao, Q. L., Makino, T., Abe, R., Matsui, K., Shimizu, H., Miyamoto, Y., Kondo, T., & Shimizu, T. (2010). Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Experimental Dermatology, 19(11), 100–106. Scholar
  22. 22.
    Yubao, L., de Groot, K., de Wijn, J., Klein, C. P. A. T., & Meer, S. V. D. (1994). Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med, 5, 326–331. Scholar
  23. 23.
    Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: Isolation and therapeutics. Stem Cells and Development, 13(4), 436–448. Scholar
  24. 24.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.<364::AID-JNR2>3.0.CO;2-C.Google Scholar
  25. 25.
    Van Meerloo, J., Kaspers, G. J. L., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. Methods in Molecular Biology, 237–245, 237–245. Scholar
  26. 26.
    Yi, C., Liu, D., Fong, C. C., Zhang, J., & Yang, M. (2010). Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 4(11), 6439–6448. Scholar
  27. 27.
    Gori, F., Divieti, P., & Demay, M. B. (2001). Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. Journal of Biological Chemistry, 26(49), 46515–46522. Scholar
  28. 28.
    Huang, G. T.-J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806. Scholar
  29. 29.
    Power, R. A., Iwaniec, U. T., Magee, K. A., Mitova-Caneva, N. G., & Wronski, T. J. (2004). Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporosis International, 15(9), 716–723. Scholar
  30. 30.
    Ahmed, H. H., El-Sayed Mahdy, E. S. M., Shousha, W. G., Rashed, L. A., & Abdo, S. M. (2013). Potential role of bone marrow derived mesenchymal stem cells with or without injectable calcium phosphate composite in management of osteoporosis in rat model. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL 3), 494–504.Google Scholar
  31. 31.
    Griffin, M. G., Kimble, R., Hopfer, W., & Pacifici, R. (2009). Dual-energy x-ray absorptiometry of the rat: Accuracy, precision, and measurement of bone loss. Journal of Bone and Mineral Research, 8(7), 795–800. Scholar
  32. 32.
    Carleton, H. M. (Harry M., Drury, R. A. B. (Roger A. B., & Wallington, E. A. (1980). Carleton’s Histological technique. Oxford University Press Oxford.Google Scholar
  33. 33.
    Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A. (2013). Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. International Journal of Physical Sciences, 8(32), 1639–1645. Scholar
  34. 34.
    Zhang, C. Y., Chen, J., Zhuang, Z., Zhang, T., Wang, X. P., & Fang, Q. F. (2012). In situ hybridization and characterization of fibrous hydroxyapatite/chitosan nanocomposite. Journal of Applied Polymer Science, 124, 397–402. Scholar
  35. 35.
    Rajathi, F. A. A., & Nambaru, V. R. M. S. (2014). Phytofabrication of nano-crystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy. International Journal of Pharma and BioSciences, 5(1), 619–628.Google Scholar
  36. 36.
    Rajasekharreddy, P., & Rani, P. U. (2014). Biosynthesis and characterization of Pd and Pt nanoparticles using Piper betle L. Plant in a Photoreduction Method. Journal of Cluster Science, 25, 1377–1388. Scholar
  37. 37.
    Oreffo, R. O. C., Cooper, C., Mason, C., & Clements, M. (2005). Mesenchymal stem cells lineage, plasticity, and skeletal therapeutic potential. Stem Cell Reviews, 1(2), 169–178. Scholar
  38. 38.
    Kaur, G., Valarmathi, M. T., Potts, J. D., Jabbari, E., Sabo-Attwood, T., & Wang, Q. (2010). Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials, 31(7), 1732–1741. Scholar
  39. 39.
    White, M. A., & Anderson, R. G. W. (2005). Signaling networks in living cells. Annual Review of Pharmacology and Toxicology, 45(1), 587–603. Scholar
  40. 40.
    Liu, D., Yi, C., Zhang, D., Zhang, J., & Yang, M. (2010). Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano, 4(4), 2185–2195. Scholar
  41. 41.
    Porter, A. E., Gass, M., Bendall, J. S., Muller, K., Goode, A., Skepper, J. N., Midgley, P. A., & Welland, M. (2009). Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano, 3(6), 1485–1492. Scholar
  42. 42.
    Remya, N. S. S., Syama, S., Gayathri, V., Varma, H. K. K., & Mohanan, P. V. V. (2014). An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids and Surfaces B: Biointerfaces, 117, 389–397. Scholar
  43. 43.
    Dong, P., Zhu, D., Deng, X., Zhang, Y., Ma, J., Sun, X., & Liu, Y. (2019). Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. Journal of biomedical materials research. Part A, 107(1), 145–153. Scholar
  44. 44.
    Rostek, A., Breisch, M., Pappert, K., Loza, K., Heggen, M., Köller, M., Sengstock, C., & Epple, M. (2018). Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4-8 nm diameter. Beilstein Journal of Nanotechnology, 9, 2763–2774. Scholar
  45. 45.
    Komori, T., Kot, M., & Daniel, W. A. (2003). Requisite roles of Runx2 and Cbfb in skeletal development. Journal of Bone and Mineral Metabolism, 21(3), 193–197. Scholar
  46. 46.
    Benoit, D. S. W., Collins, S. D., & Anseth, K. S. (2007). Multifunctional hydrogels that promote osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Advanced Functional Materials, 17(13), 2085–2093. Scholar
  47. 47.
    Santos, C., Gomes, P. S., Duarte, J. A., Franke, R. P., Almeida, M. M., Costa, M. E. V., & Fernandes, M. H. (2012). Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response. Journal of the Royal Society Interface, 9(77), 3397–3410. Scholar
  48. 48.
    Kim, K., Dean, D., Lu, A., Mikos, A. G., & Fisher, J. P. (2011). Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomaterialia, 7(3), 1249–1264. Scholar
  49. 49.
    Peng, H., Yin, Z., Liu, H., Chen, X., Feng, B., Yuan, H., Su, B., Ouyang, H., & Zhang, Y. (2012). Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 23(48), 485102. Scholar
  50. 50.
    Zhang, Q., Nguyen, A. L., Shi, S., Hill, C., Wilder-Smith, P., Krasieva, T. B., & Le, A. D. (2012). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells and Development, 21(6), 937–947. Scholar
  51. 51.
    Lu, Z., Roohani-Esfahani, S.-I., Kwok, P. C. L., & Zreiqat, H. (2011). Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Tissue Engineering Part A, 17(11–12), 1651–1661. Scholar
  52. 52.
    Pockwinse, S. M., Wilming, L. G., Conlon, D. M., Stein, G. S., & Lian, J. B. (1992). Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. Journal of Cellular Biochemistry, 49(3), 310–323. Scholar
  53. 53.
    STEIN, G. S., & LIAN, J. B. (1993). Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Reviews, 14(4), 424–442. Scholar
  54. 54.
    Thompson, D. D., Simmons, H. A., Pirie, C. M., & Ke, H. Z. (1995). FDA guidelines and animal models for osteoporosis. Bone., 17(4), S125–S133. Scholar
  55. 55.
    Nikolaou, V. S., Efstathopoulos, N., Kontakis, G., Kanakaris, N. K., & Giannoudis, P. V. (2009). The influence of osteoporosis in femoral fracture healing time. Injury, 40(6), 663–668. Scholar
  56. 56.
    Abuohashish, H. M., Ahmed, M. M., Al-Rejaie, S. S., & Eltahir, K. E. (2015). The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacologica Sinica, 36(2), 209–220. Scholar
  57. 57.
    Katagiri, T., & Takahashi, N. (2002). Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Diseases, 8(3), 147–159. Scholar
  58. 58.
    Sims, N. A., & Martin, T. J. (2014). Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. BoneKEy Reports, 3, 1–10. Scholar
  59. 59.
    Saraç, F., & Saygılı, F. (2007). Causes of high bone alkaline phosphatase. Biotechnology and Biotechnological Equipment, 18(5), 444–448. Scholar
  60. 60.
    Jagtap, V. R., Ganu, J. V., & Nagane, N. S. (2011). BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian Journal of Clinical Biochemistry, 26(1), 70–73. Scholar
  61. 61.
    Chan, B. Y., Fuller, E. S., Russell, A. K., Smith, S. M., Smith, M. M., Jackson, M. T., Cake, M. A., Read, R. A., Bateman, J. F., Sambrook, P. N., & Little, C. B. (2011). Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis and Cartilage, 19(7), 874–885. Scholar
  62. 62.
    Fisher, L., & Fedarko, N. (2007). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connective Tissue Research, 44(1), 33–40. Scholar
  63. 63.
    Ogbureke, K. U. E., & Fisher, L. W. (2005). Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney International, 292(3), 905–911. Scholar
  64. 64.
    Ganss, B., Kim, R. H., & Sodek, J. (1999). Bone sialoprotein. Critical Reviews in Oral Biology and Medicine, 10(1), 79–98.Google Scholar
  65. 65.
    Lei, Z., Xiaoying, Z., & Xingguo, L. (2009). Ovariectomy-associated changes in bone mineral density and bone marrow haematopoiesis in rats. International Journal of Experimental Pathology, 90(5), 512–519. Scholar
  66. 66.
    Cenci, S., Weitzmann, M. N., Gentile, M. A., Aisa, M. C., & Pacifici, R. (2000). M-CSF neutralization and Egr-1 deficiency prevent ovariectomy-induced bone loss. Journal of Clinical Investigation, 105(9), 1279–1287. Scholar
  67. 67.
    Nian, H., Ma, M. H., Nian, S. S., & Xu, L. L. (2009). Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine, 16(4), 320–326. Scholar
  68. 68.
    Ferretti, M., Bertoni, L., Cavani, F., Zavatti, M., Resca, E., Carnevale, G., Benelli, A., Zanoli, P., & Palumbo, C. (2010). Influence of ferutinin on bone metabolism in ovariectomized rats. II: Role in recovering osteoporosis. Journal of Anatomy, 2017(1), 48–56. Scholar
  69. 69.
    Cardinali, D. P., Ladizesky, M. G., Boggio, V., Cutrera, R. A., & Mautalen, C. (2003). Melatonin effects on bone: Experimental facts and clinical perspectives. Journal of Pineal Research, 34(2), 81–87. Scholar
  70. 70.
    Kotlarczyk, M. P., Lassila, H. C., O’Neil, C. K., D’Amico, F., Enderby, L. T., Witt-Enderby, P. A., & Balk, J. L. (2012). Melatonin osteoporosis prevention study (MOPS): A randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. Journal of Pineal Research, 52(4), 414–426. Scholar
  71. 71.
    Kim, S. J., Jang, J. D., & Lee, S. K. (2007). Treatment of long tubular bone defect of rabbit using autologous cultured osteoblasts mixed with fibrin. Cytotechnology, 54(2), 115–120. Scholar
  72. 72.
    Okabe, Y. T., Kondo, T., Mishima, K., Hayase, Y., Kato, K., Mizuno, M., Ishiguro, N., & Kitoh, H. (2014). Biodistribution of locally or systemically transplanted osteoblast-like cells. Bone & Joint Research, 3(3), 76–81. Scholar
  73. 73.
    Liao, Y. J., Tang, P. C., Chen, Y. H., Chu, F. H., Kang, T. C., Chen, L. R., & Yang, J. R. (2018). Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS One, 13(8), e0202155. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hormones Department, Medical Research DivisionNational Research CentreGizaEgypt
  2. 2.Stem Cells Lab, Center of Excellence for Advanced SciencesNational Research CentreGizaEgypt
  3. 3.Basic Dental Science Department, Oral & Dental Research DivisionNational Research CentreGizaEgypt

Personalised recommendations