Advertisement

Nanotechnological Applications Hold a Pivotal Position in Boosting Stem Cells Osteogenic Activity: In Vitro and In Vivo Studies

  • Hadeer A. AglanEmail author
  • Hanaa H. Ahmed
  • Nadia S. Mahmoud
  • Riham M. Aly
  • Naglaa A. Ali
  • Ahmed A. Abd-Rabou
Article
  • 51 Downloads

Abstract

This approach was constructed to appraise the therapeutic effectiveness of a single i.v. dose of osteoblasts generated from co-culturing BM-MSCs with nano-HA, Pt-NPs, or Pt-HA-nanocomposite in osteoporotic rats. MSCs were grown, propagated in culture, and characterized. The effect of the suggested nanoplatforms on the survival, osteogenic differentiation, and mineralization of BM-MSCs was assessed by MTT assay, real-time PCR analysis, and Alizarin red S staining, respectively. Thereafter, the generated osteoblasts were employed for the treatment of ovariectomized rats. Our results revealed that the selected nanoplatforms upregulate the expression of osteogenic differentiation related genes (Runx-2 and BMP-2) significantly and enhance calcium deposition in BM-MSCs after 7 and 21 days, respectively, whereas the in vivo study validated that the infusion of the generated osteoblasts considerably downturn serum BALP, BSP, and SOST levels; upswing OSX level; and regain femur bone mineralization and histoarchitecture. Conclusively, the outcomes of this work provide scientific evidence that transplanting osteoblasts derived from differentiation of BM-MSCs in the presence of nanoplatforms in ovariectomized rats restores bone remodeling balance which constitutes a new hope for the treatment of osteoporosis.

Keywords

Osteoporosis Bone marrow mesenchymal stem cell Nanoplatforms Osteoblast In vitro In vivo 

Abbreviations

BALP

Bone alkaline phosphatase

BM-MSCs

Bone marrow derived mesenchymal stem cells

BMP-2

Bone morphogenetic protein 2

BSP

Bone sialoprotein

Nano-HA

Nanohydroxyapatite

OSX

Osterix

Pt-NPs

Platinum nanoparticles

Pt-HA-nanocomposite

Platinum-hydroxyapatite-nanocomposite

Runx-2

Runt-related transcription factor 2

SOST

Sclerostin

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the National Research Centre, Egypt (Grant no. P100528) and the technical support of the Science and Technology Development Fund (STDF), Egypt, through Capacity Building program (Grant no. 4880). Also, the authors express sincere appreciation to Prof. Adel Bakeer kholoussy, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University for his kind cooperation in conducting histological examination in this study.

Funding

This work was financially supported by the National Research Centre, Egypt (grant no. P100528).

Compliance with Ethical Standards

This study was conducted in strict accordance with the recommendations of the guidelines for the care and use of laboratory animals of the National Research Centre, Egypt. The experimental procedures were endorsed by the Ethical Committee of Medical Research of National Research Centre, Giza, Egypt (Admittance code 15 - 154).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aghebati-Maleki, L., Dolati, S., Zandi, R., Fotouhi, A., Ahmadi, M., Aghebati, A., Nouri, M., Kazem Shakouri, S., & Yousefi, M. (2018). Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. Journal of Cellular Physiology, 234(6), 8570–8578.  https://doi.org/10.1002/jcp.27833.Google Scholar
  2. 2.
    Facts and Statistics | International Osteoporosis Foundation. (n.d.). Retrieved March 19, 2019, from https://www.iofbonehealth.org/facts-statistics
  3. 3.
    Korpi-Steiner, N., Milhorn, D., & Hammett-Stabler, C. (2014). Osteoporosis in men. Clinical Biochemistry, 47(10–11), 950–959.  https://doi.org/10.1016/j.clinbiochem.2014.03.026.Google Scholar
  4. 4.
    El-Said Hossien, Y. (2014). Osteoporosis knowledge among female adolescents in Egypt. American Journal of Nursing Science, 3(2), 13.  https://doi.org/10.11648/j.ajns.20140302.11.Google Scholar
  5. 5.
    Lin, X., Xiong, D., Peng, Y. Q., Sheng, Z. F., Wu, X. Y., Wu, X. P., et al. (2015). Epidemiology and management of osteoporosis in the people’s republic of China: Current perspectives. Clinical Interventions in Aging, 10, 1017–1033.  https://doi.org/10.2147/CIA.S54613.Google Scholar
  6. 6.
    Knopp-Sihota, J. A., Cummings, G. G., Homik, J., & Voaklander, D. (2013). The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: A population-based nested cohort study. BMC Geriatrics, 13(1), 110–120.  https://doi.org/10.1186/1471-2318-13-36.Google Scholar
  7. 7.
    Zhang, Y., Luo, H., Zhang, Z., Lu, Y., Huang, X., Yang, L., Xu, J., Yang, W., Fan, X., du, B., Gao, P., Hu, G., & Jin, Y. (2010). A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials, 31(20), 5312–5324.  https://doi.org/10.1016/j.biomaterials.2010.03.029.Google Scholar
  8. 8.
    Hu, L., Yin, C., Zhao, F., Ali, A., Ma, J., & Qian, A. (2018). Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. International Journal of Molecular Sciences, 19(2), 360.  https://doi.org/10.3390/ijms19020360.Google Scholar
  9. 9.
    Ichioka, N., Inaba, M., Kushida, T., Esumi, T., Takahara, K., Inaba, K., Ogawa, R., Iida, H., & Ikehara, S. (2002). Prevention of senile osteoporosis in SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells. Stem Cells, 20(6), 542–551.  https://doi.org/10.1634/stemcells.20-6-542.Google Scholar
  10. 10.
    Wang, Z., Goh, J., De, S. D., Ge, Z., Ouyang, H., Sue, J., et al. (2006). Efficacy of bone marrow–derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Engineering, 12(7), 1753–1761.  https://doi.org/10.1089/ten.2006.12.1753.Google Scholar
  11. 11.
    Gutwald, R., Haberstroh, J., Kuschnierz, J., Kister, C., Lysek, D. A., Maglione, M., Xavier, S. P., Oshima, T., Schmelzeisen, R., & Sauerbier, S. (2010). Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation: Comparison with augmentation by autologous bone in adult sheep. British Journal of Oral and Maxillofacial Surgery, 48(4), 285–290.  https://doi.org/10.1016/j.bjoms.2009.06.226.Google Scholar
  12. 12.
    Granero-Moltó, F., Weis, J. A., Miga, M. I., Landis, B., Myers, T. J., O’Rear, L., et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 27(8), 1887–1898.  https://doi.org/10.1002/stem.103.Google Scholar
  13. 13.
    Tautzenberger, A., Kovtun, A., & Ignatius, A. (2012). Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 7, 4545–4557.  https://doi.org/10.2147/IJN.S34127.Google Scholar
  14. 14.
    Roohani-Esfahani, S. I., Nouri-Khorasani, S., Lu, Z., Appleyard, R., & Zreiqat, H. (2010). The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials, 31(21), 5498–5509.  https://doi.org/10.1016/j.biomaterials.2010.03.058.Google Scholar
  15. 15.
    Yin, Z., Chen, X., Chen, J. L., Shen, W. L., Hieu Nguyen, T. M., Gao, L., & Ouyang, H. W. (2010). The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 31(8), 2163–2175.  https://doi.org/10.1016/j.biomaterials.2009.11.083.Google Scholar
  16. 16.
    Oh, S., Brammer, K. S., Li, Y. S. J., Teng, D., Engler, A. J., Chien, S., et al. (2009). Stem cell fate dictated solely by altered nanotube dimension. P Natl Acad Sci USA, 160(24), 60.Google Scholar
  17. 17.
    Amna, T. (2018). Valorization of bone waste of Saudi Arabia by synthesizing hydroxyapatite. Applied Biochemistry and Biotechnology, 186(3), 779–778.  https://doi.org/10.1007/s12010-018-2768-5.Google Scholar
  18. 18.
    Heo, S.-J., Kim, S.-E., Wei, J., Kim, D. H., Hyun, Y.-T., Yun, H.-S., Kim, H. K., Yoon, T. R., Kim, S. H., Park, S. A., Shin, J. W., & Shin, J.-W. (2009). In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue engineering. Part A, 15(5), 977–989.  https://doi.org/10.1089/ten.tea.2008.0190.Google Scholar
  19. 19.
    Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Sech, C. L., & Lacombe, S. (2010). Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology, 21, 085103.  https://doi.org/10.1088/0957-4484/21/8/085103.Google Scholar
  20. 20.
    Park, E. J., Kim, H., Kim, Y., Yi, J., Choi, K., & Park, K. (2010). Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology, 275(1–3), 65–71.  https://doi.org/10.1016/j.tox.2010.06.002.Google Scholar
  21. 21.
    Yoshihisa, Y., Honda, A., Zhao, Q. L., Makino, T., Abe, R., Matsui, K., Shimizu, H., Miyamoto, Y., Kondo, T., & Shimizu, T. (2010). Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Experimental Dermatology, 19(11), 100–106.  https://doi.org/10.1111/j.1600-0625.2010.01128.x.Google Scholar
  22. 22.
    Yubao, L., de Groot, K., de Wijn, J., Klein, C. P. A. T., & Meer, S. V. D. (1994). Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci Mater Med, 5, 326–331.  https://doi.org/10.1007/BF00058956.Google Scholar
  23. 23.
    Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: Isolation and therapeutics. Stem Cells and Development, 13(4), 436–448.  https://doi.org/10.1089/1547328041797552.Google Scholar
  24. 24.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.  https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C.Google Scholar
  25. 25.
    Van Meerloo, J., Kaspers, G. J. L., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. Methods in Molecular Biology, 237–245, 237–245.  https://doi.org/10.1007/978-1-61779-80-5_20.Google Scholar
  26. 26.
    Yi, C., Liu, D., Fong, C. C., Zhang, J., & Yang, M. (2010). Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 4(11), 6439–6448.  https://doi.org/10.1021/nn101373r.Google Scholar
  27. 27.
    Gori, F., Divieti, P., & Demay, M. B. (2001). Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. Journal of Biological Chemistry, 26(49), 46515–46522.  https://doi.org/10.1074/jbc.M105757200.Google Scholar
  28. 28.
    Huang, G. T.-J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.  https://doi.org/10.1177/0022034509340867.Google Scholar
  29. 29.
    Power, R. A., Iwaniec, U. T., Magee, K. A., Mitova-Caneva, N. G., & Wronski, T. J. (2004). Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporosis International, 15(9), 716–723.  https://doi.org/10.1007/s00198-004-1595-4.Google Scholar
  30. 30.
    Ahmed, H. H., El-Sayed Mahdy, E. S. M., Shousha, W. G., Rashed, L. A., & Abdo, S. M. (2013). Potential role of bone marrow derived mesenchymal stem cells with or without injectable calcium phosphate composite in management of osteoporosis in rat model. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL 3), 494–504.Google Scholar
  31. 31.
    Griffin, M. G., Kimble, R., Hopfer, W., & Pacifici, R. (2009). Dual-energy x-ray absorptiometry of the rat: Accuracy, precision, and measurement of bone loss. Journal of Bone and Mineral Research, 8(7), 795–800.  https://doi.org/10.1002/jbmr.5650080704.Google Scholar
  32. 32.
    Carleton, H. M. (Harry M., Drury, R. A. B. (Roger A. B., & Wallington, E. A. (1980). Carleton’s Histological technique. Oxford University Press Oxford.Google Scholar
  33. 33.
    Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A. (2013). Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. International Journal of Physical Sciences, 8(32), 1639–1645.  https://doi.org/10.5897/IJPS2013.3990.Google Scholar
  34. 34.
    Zhang, C. Y., Chen, J., Zhuang, Z., Zhang, T., Wang, X. P., & Fang, Q. F. (2012). In situ hybridization and characterization of fibrous hydroxyapatite/chitosan nanocomposite. Journal of Applied Polymer Science, 124, 397–402.  https://doi.org/10.1002/app.35103.Google Scholar
  35. 35.
    Rajathi, F. A. A., & Nambaru, V. R. M. S. (2014). Phytofabrication of nano-crystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy. International Journal of Pharma and BioSciences, 5(1), 619–628.Google Scholar
  36. 36.
    Rajasekharreddy, P., & Rani, P. U. (2014). Biosynthesis and characterization of Pd and Pt nanoparticles using Piper betle L. Plant in a Photoreduction Method. Journal of Cluster Science, 25, 1377–1388.  https://doi.org/10.1007/s10876-014-0715-3.Google Scholar
  37. 37.
    Oreffo, R. O. C., Cooper, C., Mason, C., & Clements, M. (2005). Mesenchymal stem cells lineage, plasticity, and skeletal therapeutic potential. Stem Cell Reviews, 1(2), 169–178.  https://doi.org/10.1385/SCR:1:2:169.Google Scholar
  38. 38.
    Kaur, G., Valarmathi, M. T., Potts, J. D., Jabbari, E., Sabo-Attwood, T., & Wang, Q. (2010). Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials, 31(7), 1732–1741.  https://doi.org/10.1016/j.biomaterials.2009.11.041.Google Scholar
  39. 39.
    White, M. A., & Anderson, R. G. W. (2005). Signaling networks in living cells. Annual Review of Pharmacology and Toxicology, 45(1), 587–603.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095807.Google Scholar
  40. 40.
    Liu, D., Yi, C., Zhang, D., Zhang, J., & Yang, M. (2010). Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano, 4(4), 2185–2195.  https://doi.org/10.1021/nn901479w.Google Scholar
  41. 41.
    Porter, A. E., Gass, M., Bendall, J. S., Muller, K., Goode, A., Skepper, J. N., Midgley, P. A., & Welland, M. (2009). Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano, 3(6), 1485–1492.  https://doi.org/10.1021/nn900416z.Google Scholar
  42. 42.
    Remya, N. S. S., Syama, S., Gayathri, V., Varma, H. K. K., & Mohanan, P. V. V. (2014). An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids and Surfaces B: Biointerfaces, 117, 389–397.  https://doi.org/10.1016/j.colsurfb.2014.02.004.Google Scholar
  43. 43.
    Dong, P., Zhu, D., Deng, X., Zhang, Y., Ma, J., Sun, X., & Liu, Y. (2019). Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. Journal of biomedical materials research. Part A, 107(1), 145–153.  https://doi.org/10.1002/jbm.a.36541.Google Scholar
  44. 44.
    Rostek, A., Breisch, M., Pappert, K., Loza, K., Heggen, M., Köller, M., Sengstock, C., & Epple, M. (2018). Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4-8 nm diameter. Beilstein Journal of Nanotechnology, 9, 2763–2774.  https://doi.org/10.3762/bjnano.9.258.Google Scholar
  45. 45.
    Komori, T., Kot, M., & Daniel, W. A. (2003). Requisite roles of Runx2 and Cbfb in skeletal development. Journal of Bone and Mineral Metabolism, 21(3), 193–197.  https://doi.org/10.1007/s00774-002-0408-0.Google Scholar
  46. 46.
    Benoit, D. S. W., Collins, S. D., & Anseth, K. S. (2007). Multifunctional hydrogels that promote osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Advanced Functional Materials, 17(13), 2085–2093.  https://doi.org/10.1002/adfm.200700012.Google Scholar
  47. 47.
    Santos, C., Gomes, P. S., Duarte, J. A., Franke, R. P., Almeida, M. M., Costa, M. E. V., & Fernandes, M. H. (2012). Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response. Journal of the Royal Society Interface, 9(77), 3397–3410.  https://doi.org/10.1098/rsif.2012.0487.Google Scholar
  48. 48.
    Kim, K., Dean, D., Lu, A., Mikos, A. G., & Fisher, J. P. (2011). Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomaterialia, 7(3), 1249–1264.  https://doi.org/10.1016/j.actbio.2010.11.007.Google Scholar
  49. 49.
    Peng, H., Yin, Z., Liu, H., Chen, X., Feng, B., Yuan, H., Su, B., Ouyang, H., & Zhang, Y. (2012). Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 23(48), 485102.  https://doi.org/10.1088/0957-4484/23/48/485102.Google Scholar
  50. 50.
    Zhang, Q., Nguyen, A. L., Shi, S., Hill, C., Wilder-Smith, P., Krasieva, T. B., & Le, A. D. (2012). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells and Development, 21(6), 937–947.  https://doi.org/10.1089/scd.2011.0252.Google Scholar
  51. 51.
    Lu, Z., Roohani-Esfahani, S.-I., Kwok, P. C. L., & Zreiqat, H. (2011). Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Tissue Engineering Part A, 17(11–12), 1651–1661.  https://doi.org/10.1089/ten.tea.2010.0567.Google Scholar
  52. 52.
    Pockwinse, S. M., Wilming, L. G., Conlon, D. M., Stein, G. S., & Lian, J. B. (1992). Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. Journal of Cellular Biochemistry, 49(3), 310–323.  https://doi.org/10.1002/jcb.240490315.Google Scholar
  53. 53.
    STEIN, G. S., & LIAN, J. B. (1993). Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Reviews, 14(4), 424–442.  https://doi.org/10.1210/edrv-14-4-424.Google Scholar
  54. 54.
    Thompson, D. D., Simmons, H. A., Pirie, C. M., & Ke, H. Z. (1995). FDA guidelines and animal models for osteoporosis. Bone., 17(4), S125–S133.  https://doi.org/10.1016/8756-3282(95)00285-L.Google Scholar
  55. 55.
    Nikolaou, V. S., Efstathopoulos, N., Kontakis, G., Kanakaris, N. K., & Giannoudis, P. V. (2009). The influence of osteoporosis in femoral fracture healing time. Injury, 40(6), 663–668.  https://doi.org/10.1016/j.injury.2008.10.035.Google Scholar
  56. 56.
    Abuohashish, H. M., Ahmed, M. M., Al-Rejaie, S. S., & Eltahir, K. E. (2015). The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacologica Sinica, 36(2), 209–220.  https://doi.org/10.1038/aps.2014.111.Google Scholar
  57. 57.
    Katagiri, T., & Takahashi, N. (2002). Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Diseases, 8(3), 147–159.  https://doi.org/10.1034/j.1601-0825.2002.01829.x.Google Scholar
  58. 58.
    Sims, N. A., & Martin, T. J. (2014). Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. BoneKEy Reports, 3, 1–10.  https://doi.org/10.1038/bonekey.2013.215.Google Scholar
  59. 59.
    Saraç, F., & Saygılı, F. (2007). Causes of high bone alkaline phosphatase. Biotechnology and Biotechnological Equipment, 18(5), 444–448.  https://doi.org/10.1080/13102818.2007.10817444.Google Scholar
  60. 60.
    Jagtap, V. R., Ganu, J. V., & Nagane, N. S. (2011). BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian Journal of Clinical Biochemistry, 26(1), 70–73.  https://doi.org/10.1007/s12291-010-0074-2.Google Scholar
  61. 61.
    Chan, B. Y., Fuller, E. S., Russell, A. K., Smith, S. M., Smith, M. M., Jackson, M. T., Cake, M. A., Read, R. A., Bateman, J. F., Sambrook, P. N., & Little, C. B. (2011). Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis and Cartilage, 19(7), 874–885.  https://doi.org/10.1016/j.joca.2011.04.014.Google Scholar
  62. 62.
    Fisher, L., & Fedarko, N. (2007). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connective Tissue Research, 44(1), 33–40.  https://doi.org/10.1080/713713644.Google Scholar
  63. 63.
    Ogbureke, K. U. E., & Fisher, L. W. (2005). Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney International, 292(3), 905–911.  https://doi.org/10.1111/j.1523-1755.2005.00389.x.Google Scholar
  64. 64.
    Ganss, B., Kim, R. H., & Sodek, J. (1999). Bone sialoprotein. Critical Reviews in Oral Biology and Medicine, 10(1), 79–98.Google Scholar
  65. 65.
    Lei, Z., Xiaoying, Z., & Xingguo, L. (2009). Ovariectomy-associated changes in bone mineral density and bone marrow haematopoiesis in rats. International Journal of Experimental Pathology, 90(5), 512–519.  https://doi.org/10.1111/j.1365-2613.2009.00661.x.Google Scholar
  66. 66.
    Cenci, S., Weitzmann, M. N., Gentile, M. A., Aisa, M. C., & Pacifici, R. (2000). M-CSF neutralization and Egr-1 deficiency prevent ovariectomy-induced bone loss. Journal of Clinical Investigation, 105(9), 1279–1287.  https://doi.org/10.1172/JCI8672.Google Scholar
  67. 67.
    Nian, H., Ma, M. H., Nian, S. S., & Xu, L. L. (2009). Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine, 16(4), 320–326.  https://doi.org/10.1016/j.phymed.2008.12.006.Google Scholar
  68. 68.
    Ferretti, M., Bertoni, L., Cavani, F., Zavatti, M., Resca, E., Carnevale, G., Benelli, A., Zanoli, P., & Palumbo, C. (2010). Influence of ferutinin on bone metabolism in ovariectomized rats. II: Role in recovering osteoporosis. Journal of Anatomy, 2017(1), 48–56.  https://doi.org/10.1111/j.1469-7580.2010.01242.x.Google Scholar
  69. 69.
    Cardinali, D. P., Ladizesky, M. G., Boggio, V., Cutrera, R. A., & Mautalen, C. (2003). Melatonin effects on bone: Experimental facts and clinical perspectives. Journal of Pineal Research, 34(2), 81–87.  https://doi.org/10.1034/j.1600-079X.2003.00028.x.Google Scholar
  70. 70.
    Kotlarczyk, M. P., Lassila, H. C., O’Neil, C. K., D’Amico, F., Enderby, L. T., Witt-Enderby, P. A., & Balk, J. L. (2012). Melatonin osteoporosis prevention study (MOPS): A randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. Journal of Pineal Research, 52(4), 414–426.  https://doi.org/10.1111/j.1600-079X.2011.00956.x.Google Scholar
  71. 71.
    Kim, S. J., Jang, J. D., & Lee, S. K. (2007). Treatment of long tubular bone defect of rabbit using autologous cultured osteoblasts mixed with fibrin. Cytotechnology, 54(2), 115–120.  https://doi.org/10.1007/s10616-007-9084-1.Google Scholar
  72. 72.
    Okabe, Y. T., Kondo, T., Mishima, K., Hayase, Y., Kato, K., Mizuno, M., Ishiguro, N., & Kitoh, H. (2014). Biodistribution of locally or systemically transplanted osteoblast-like cells. Bone & Joint Research, 3(3), 76–81.  https://doi.org/10.1302/2046-3758.33.2000257.Google Scholar
  73. 73.
    Liao, Y. J., Tang, P. C., Chen, Y. H., Chu, F. H., Kang, T. C., Chen, L. R., & Yang, J. R. (2018). Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS One, 13(8), e0202155.  https://doi.org/10.1371/journal.pone.0202155.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hormones Department, Medical Research DivisionNational Research CentreGizaEgypt
  2. 2.Stem Cells Lab, Center of Excellence for Advanced SciencesNational Research CentreGizaEgypt
  3. 3.Basic Dental Science Department, Oral & Dental Research DivisionNational Research CentreGizaEgypt

Personalised recommendations