Advertisement

Facile Fabrication of Graphene-Supported Pt Electrochemical Sensor for Determination of Caffeine

  • Jie QiaoEmail author
  • Liting Zhang
  • Shan Gao
  • Ningbo Li
Article
  • 18 Downloads

Abstract

Because elevated levels of caffeine intake can cause many health complications, it is necessary to develop an accurate, simple, rapid, and cost-effective methodology to quantify caffeine in commonly consumed products. This article discusses electrochemical methods to synthesize platinum-graphene hybrid nanosheets (Pt-GR), and how these methods can be utilized to create a new modified electrode, the platinum-graphene nanohybrid glass carbon electrode (Pt-GR/GCE). The electrochemical behavior of caffeine on Pt-GR/GCE was studied by differential pulse voltammetry (DPV). The results showed that a sensitive oxidation peak was observed at 1.336 V in 0.01 mol L−1 H2SO4 buffer solution, indicating that the Pt-GR/GCE exhibited a good electrooxidation activity towards caffeine. The detection limit is 1.129 × 10−7 mol L−1. The modified electrode was applied to the determination of caffeine in real samples with satisfactory electrocatalytic results.

Keywords

Caffeine Graphene Pt Modified electrode Electrocatalysis 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (No. 21175086) and the Key Research and Development Projects of Shanxi Province (No. 201803D31070).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Peng, Z. M., & Yang, H. (2009). Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 4(2), 143–164.CrossRefGoogle Scholar
  2. 2.
    Mayrhofer, K. J. J., Strmcnik, D., Blizanac, B. B., Stamenkovic, V., Arenz, M., & Markovic, N. M. (2008). Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta, 53(7), 3181–3188.CrossRefGoogle Scholar
  3. 3.
    Perez, J., Gonzalez, E. R., & Ticianelli, E. A. (1998). Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochimica Acta, 44(8-9), 1329–1339.CrossRefGoogle Scholar
  4. 4.
    Seo, M. H., Choi, S. M., Kim, H. J., Kim, J. H., Cho, B. K., & Kim, W. B. (2008). A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. Journal of Power Sources, 179(1), 81–86.CrossRefGoogle Scholar
  5. 5.
    Bahadır, E. B., & Sezginturk, M. K. (2016). Applications of graphene in electrochemical sensing and biosensing. Trac-Trend. Anal. Chem., 76, 1–14.CrossRefGoogle Scholar
  6. 6.
    Momeni, S., & Nabipour, I. (2015). A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Applied Biochemistry and Biotechnology, 176(7), 1937–1949.CrossRefGoogle Scholar
  7. 7.
    Pogacean, F., Coros, M., Magerusan, L., Mirel, V., Turza, A., Katona, G., Staden, R. I., & Pruneanu, S. (2019). Exfoliation of graphite rods via pulses of current for graphene synthesis: sensitive detection of 8-hydroxy-2’-deoxyguanosine. Talanta., 196, 182–190.CrossRefGoogle Scholar
  8. 8.
    Liu, Y. X., Dong, X. C., & Chen, P. (2012). Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 41(6), 2283–2307.CrossRefGoogle Scholar
  9. 9.
    Edwards, R.S. & Coleman, K.S. (2013) Graphene synthesis: relationship to applications, Nanoscale. 5: 38–51.Google Scholar
  10. 10.
    Whitener, K. E., Jr., & Sheehan, P. E. (2014). Graphene synthesis. Diamond and Related Materials, 46, 25–34.CrossRefGoogle Scholar
  11. 11.
    Yeh, N. C., Hsu, C. C., Bagley, J., & Tseng, W. S. (2019). Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition. Nanotechnology., 30(16), 162001.CrossRefGoogle Scholar
  12. 12.
    Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240.CrossRefGoogle Scholar
  13. 13.
    Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224.CrossRefGoogle Scholar
  14. 14.
    Aly, A. A. (2013). Determination of caffeine in roasted and irradiated coffee beans with gamma rays by high performance liquid chromatography. Food Science and Quality Management, 22, 28–34.Google Scholar
  15. 15.
    Guo, S., Zhu, Q., Yang, B., Wang, J., & Ye, B. (2011). Determination of caffeine content in tea based on poly (safranine T) electroactive film modified electrode. Food Chemistry, 129(3), 1311–1314.CrossRefGoogle Scholar
  16. 16.
    Habibi, B., Abazari, M., & Azar, M. P. (2012). A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chinese Journal of Catalysis, 33(11-12), 1783–1790.CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Wang, L. P., Guo, W., Peng, X. D., Li, M., & Yuan, Z. B. (2011). Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and Nafion. International Journal of Electrochemical Science, 6, 997–1006.Google Scholar
  18. 18.
    Mc Mullen, M. K., White house, J. M., Shine, G., & Towell, A. (2011). Habitual coffee and tea drinkers experienced increases in blood pressure after consuming low to moderate doses of caffeine; these increases were larger upright than in the supine posture. Food & Function, 2, 197–203.CrossRefGoogle Scholar
  19. 19.
    Ali, M. M., Eisa, M., Taha, M. I., Abdalla, B. Z., & Elbashir, A. (2012). Determination of caffeine in some Sudanese beverages by high performance liquid chromatography. Pakistan Journal of Biological Sciences, 11, 336–342.Google Scholar
  20. 20.
    Torres, A. C., Barsan, M. M., & Brett, C. M. A. (2014). Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chemistry, 149, 215–220.CrossRefGoogle Scholar
  21. 21.
    Kulikov, A. U., & Verushkin, A. G. (2008). Simultaneous determination of paracetamol caffeine, guaifenesin and preservatives in syrups by Micellar LC. Chromatographia., 67(5-6), 347–355.CrossRefGoogle Scholar
  22. 22.
    Qi, M. L., Wang, P., Leng, Y. X., Gu, J. L., & Fu, R. N. (2002). Simple HPLC method for simultaneous determination of acetaminophen, caffeine and chlorpheniramine maleate in tablet formulations. Chromatographia., 56(5-6), 295–298.CrossRefGoogle Scholar
  23. 23.
    Indrayanto, G., Sunarto, A., & Adriani, Y. (1995). Simultaneous assay of phenylpropanolamine hydrochloride caffeine, paracetamol, glyceryl guaiacolate and chlorpheniramine maleate in Si lab at TM tablet using HPLC with diode array detection. Journal of Pharmaceutical and Biomedical Analysis, 13(12), 1555–1559.CrossRefGoogle Scholar
  24. 24.
    Franeta, J. T., Agbaba, D., Eric, S., Pavkov, S., Leksic, M., & Vladimirov, S. (2002). HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets. IIFarmaco, 57, 709–713.CrossRefGoogle Scholar
  25. 25.
    Emre, D., & Özaltın, N. (2007). Simultaneous determination of paracetamol, caffeine and propyphenazone in ternary mixtures by micellar electro kinetic capillary chromatography. Journal of Chromatography B, 847, 126–132.CrossRefGoogle Scholar
  26. 26.
    Cunha, R. R., Chaves, S. C., Ribeiro, M. M. A. C., Torres, L. M. F. C., Muñoz, R. A. A., Dos Santos, W. T. P., & Richter, E. M. (2015). Simultaneous determination of caffeine paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection. Journal of Separation Science, 38(10), 1657–1662.CrossRefGoogle Scholar
  27. 27.
    Vidal, A. D., Reyes, J. F. G., Barrales, P. O., & Díaz, A. M. (2002). UV spectrophotometric flow-through multiparameter sensor for the simultaneous determination of acetaminophen acetylsalicylic acid, and caffeine. Analytical Letters, 35(15), 2433–2447.CrossRefGoogle Scholar
  28. 28.
    Nogowska, M., Muszalska, I., & Zajac, M. (1999). Simultaneous spectrophotometric determination of acetylsalicylic acid, paracetamol and caffeine in pharmaceutical preparations. Chemist-Analyst, 44, 1041–1048.Google Scholar
  29. 29.
    Zen, J., & Ting, Y. (1997). Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Analytica Chimica Acta, 342(2-3), 175–180.CrossRefGoogle Scholar
  30. 30.
    Lourenção, B. C., Medeiros, R. A., Rocha-Filho, R. C., Mazo, L. H., & Fatibello-Filho, O. (2009). Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta., 78, 748–752.CrossRefGoogle Scholar
  31. 31.
    Sanghavi, B. J., & Srivastava, A. K. (2010). Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in-situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochimica Acta, 55(28), 8638–8648.CrossRefGoogle Scholar
  32. 32.
    Goyal, R. N., Rana, A. R. S., & Chasta, H. (2013). Simultaneous monitoring of aspirin, paracetamol and caffeine in human urine at poly-1,5-diaminonapthalenemodified pyrolytic graphite sensor. J. Electrochem. Soc., 160(7), 3014–3019.CrossRefGoogle Scholar
  33. 33.
    Saciloto, T. R., Cervini, P., & Cavalheiro, É. T. G. (2013). Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode. Journal of the Brazilian Chemical Society, 24, 1461–1468.Google Scholar
  34. 34.
    Habibi, B., Jahanbakhshi, M., & Abazari, M. (2014). A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine. J. Iran. Chem. Soc., 11(2), 511–521.CrossRefGoogle Scholar
  35. 35.
    Câmpean, A., Tertiş, M., & Săndulescu, R. (2011). Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode. Central European Journal of Chemistry, 9, 688–700.CrossRefGoogle Scholar
  36. 36.
    Lau, O., Luk, S., & Cheung, Y. (1989). Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulation by differential-pulse voltammetry using a glassy carbon electrode. Analyst., 114(9), 1047–1051.CrossRefGoogle Scholar
  37. 37.
    Amiri-Aref, M., Raoof, J. B., & Ojani, R. (2014). A highly sensitive electrochemical sensor for voltammetric determination of noradrenaline acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors and Actuators B: Chemical, 192, 634–641.CrossRefGoogle Scholar
  38. 38.
    Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.CrossRefGoogle Scholar
  39. 39.
    Teng, X. W., & Yang, H. (2003). Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. Journal of the American Chemical Society, 125(47), 14559–14563.CrossRefGoogle Scholar
  40. 40.
    Seger, B., & Kamat, P. V. (2009). Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. Journal of Physical Chemistry C, 113(19), 7990–7995.CrossRefGoogle Scholar
  41. 41.
    Li, W. Z., Zhou, W. J., Li, H. Q., Zhou, Z. H., Zhou, B., Sun, G. Q., & Xin, Q. (2004). Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 49(7), 1045–1055.CrossRefGoogle Scholar
  42. 42.
    Zhao, F. Y., Wang, F., Zhao, W. N., Zhou, J., Liu, Y., Zou, L. N., & Ye, B. (2011). Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide. Microchimica Acta, 174, 383–390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Department of Biochemistry and Molecular Biology, College of Basic MedicineShanxi Medical UniversityTaiyuanPeople’s Republic of China

Personalised recommendations