Studies on the Neuroprotection of Osthole on Glutamate-Induced Apoptotic Cells and an Alzheimer’s Disease Mouse Model via Modulation Oxidative Stress

  • Qiubo Chu
  • Yanfeng Zhu
  • Tianjiao Cao
  • Yi Zhang
  • Zecheng Chang
  • Yan Liu
  • Jiahui Lu
  • Yizhi ZhangEmail author


In the present study, the neuroprotection of osthole (OST) was confirmed. In l-glutamic acid (l-Glu)-damaged HT22 cells, a 3-h pre-incubation with OST-enhanced cell viability suppressed the apoptosis rate; inhibited the activities of caspase-3, caspase-8, and caspase-9; reduced the over-accumulation of intracellular reactive oxygen species; restored the dissipated mitochondrial membrane potential; and regulated the expression levels of B cell lymphoma-2 (Bcl-2), Bax, cleaved poly (ADP-ribose) polymerase (PARP), NF-E2p45-related factor 2 (Nrf2), and its downstream proteins. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week OST administration improved the pathological behaviors related to memory and cognition, and reduced the expression levels of 4-hydroxynonenal, the deposition of β-amyloid peptides and neuronal fiber tangles formed by the high phosphor-Tau in the brain. OST enhanced the expression levels of Nrf2 and its downstream proteins including superoxide dismutase-1 (SOD-1) and heme oxygenase-1 (HO-1). The present data confirmed the protection of OST against AD-like symptoms via modulating oxidative stress, especially Nrf2 signaling.


Osthole Alzheimer’s disease Apoptosis Oxidative stress Nrf2 


Funding Information

This work was supported by the Medical Health Project in Jilin Province of P. R. China (Grant No.20191102027YY), “Thirteenth Five-Year” Science and Technology Planning Project of Jilin Province in P. R. China (Grant No. JJKH20190060KJ), and the Science Foundation of Jilin Province in P. R. China (Grant No. 20180101098JC).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

The experimental animal protocol was approved by the Animal Ethics Committee of the Second Hospital of Jilin University (20171201).


  1. 1.
    Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464.CrossRefGoogle Scholar
  2. 2.
    de Oliveira, R. B., Gravina, F. S., Lim, R., Brichta, A. M., Callister, R. J., & van Helden, D. F. (2012). Heterogeneous responses to antioxidants in noradrenergic neurons of the locus coeruleus indicate differing susceptibility to free radical content. Oxidative Medicine and Cellular Longevity, 2012, 820285.CrossRefGoogle Scholar
  3. 3.
    Rosello, A., Warnes, G., & Meier, U. C. (2012). Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die--that is the question. Clinical and Experimental Immunology, 168(1), 52–57.CrossRefGoogle Scholar
  4. 4.
    Kim, D. H., Kim, D. W., Jung, B. H., Lee, J. H., Lee, H., Hwang, G. S., Kang, K. S., & Lee, J. W. (2019). Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. Journal of Ginseng Research, 43(2), 326–334.CrossRefGoogle Scholar
  5. 5.
    Joshi, G., Gan, K. A., Johnson, D. A., & Johnson, J. A. (2015). Increased Alzheimer’s disease-like pathology in the APP/ PS1DeltaE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiology of Aging, 36(2), 664–679.CrossRefGoogle Scholar
  6. 6.
    Deshpande, P., Gogia, N., & Singh, A. (2019). Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regeneration Research, 14(8), 1321–1329.CrossRefGoogle Scholar
  7. 7.
    Bi, D. B., Yang, M. S., Zhao, X., & Huang, S. M. (2015). Effect of Cnidium lactone on serum mutant P53 and BCL-2/BAX expression in human prostate cancer cells PC-3 tumor-bearing BALB/C nude mouse model. Medical Science Monitor, 21, 2421–2427.CrossRefGoogle Scholar
  8. 8.
    Fan, H., Gao, Z., Ji, K., Li, X., Wu, J., Liu, Y., Wang, X., Liang, H., Liu, Y., Li, X., Liu, P., Chen, D., & Zhao, F. (2019). The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-kappaB and MAPK/p38 pathways. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 58, 152864.CrossRefGoogle Scholar
  9. 9.
    Li, Z., Chen, X., Lu, W., Zhang, S., Guan, X., Li, Z., & Wang, D. (2017). Anti-oxidative stress activity is essential for Amanita caesarea mediated neuroprotection on glutamate-induced apoptotic HT22 cells and an Alzheimer’s disease mouse model. International Journal of Molecular Sciences, 18(8).Google Scholar
  10. 10.
    An, S., Lu, W., Zhang, Y., Yuan, Q., & Wang, D. (2017). Pharmacological basis for use of Armillaria mellea polysaccharides in Alzheimer’s disease: antiapoptosis and antioxidation. Oxidative Medicine and Cellular Longevity, 2017, 4184562.Google Scholar
  11. 11.
    Liot, G., Bossy, B., Lubitz, S., Kushnareva, Y., Sejbuk, N., & Bossy-Wetzel, E. (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death and Differentiation, 16(6), 899–909.CrossRefGoogle Scholar
  12. 12.
    Bivik, C. A., Larsson, P. K., Kagedal, K. M., Rosdahl, I. K., & Ollinger, K. M. (2006). UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. The Journal of Investigative Dermatology, 126(5), 1119–1127.CrossRefGoogle Scholar
  13. 13.
    Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN (2008) Deficiency in poly(ADP-ribose) polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Current Gerontology and Geriatrics Research 754190Google Scholar
  14. 14.
    McKee, A. E., & Thiele, C. J. (2006). Targeting caspase 8 to reduce the formation of metastases in neuroblastoma. Expert Opinion on Therapeutic Targets, 10(5), 703–708.CrossRefGoogle Scholar
  15. 15.
    Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., Zheng, X., & Li, Q. (2017). Caspase-9: structure, mechanisms and clinical application. Oncotarget, 8(14), 23996–24008.Google Scholar
  16. 16.
    Tang, X.-Q., Feng, J.-Q., Chen, J., Chen, P.-X., Zhi, J.-L., Cui, Y., Guo, R.-X., & Yu, H.-M. (2005). Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Research, 1057(1–2), 57–64.CrossRefGoogle Scholar
  17. 17.
    Bilkei-Gorzo, A. (2014). Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacology & Therapeutics, 142(2), 244–257.CrossRefGoogle Scholar
  18. 18.
    Varadarajan, S., Yatin, S., Aksenova, M., & Butterfield, D. A. (2000). Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. Journal of Structural Biology, 130(2–3), 184–208.CrossRefGoogle Scholar
  19. 19.
    Calderon-Garciduenas, A. L., & Duyckaerts, C. (2017). Alzheimer disease. Handbook of Clinical Neurology, 145, 325–337.CrossRefGoogle Scholar
  20. 20.
    Kim, D. I., Lee, K. H., Gabr, A. A., Choi, G. E., Kim, J. S., Ko, S. H., & Han, H. J. (2016). A beta-induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochimica et Biophysica Acta, 1863(11), 2820–2834.CrossRefGoogle Scholar
  21. 21.
    Santana, I., Baldeiras, I., Santiago, B., Duro, D., Freitas, S., Pereira, M. T., Almeida, M. R., & Oliveira, C. R. (2018). Underlying biological processes in mild cognitive impairment: amyloidosis versus neurodegeneration. Journal of Alzheimer's Disease, 64(s1), S647–SS57.CrossRefGoogle Scholar
  22. 22.
    Kaur, S. J., McKeown, S. R., & Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene, 577(2), 109–118.CrossRefGoogle Scholar
  23. 23.
    Hettiarachchi, N., Dallas, M., Al-Owais, M., Griffiths, H., Hooper, N., Scragg, J., Boyle, J., & Peers, C. (2014). Heme oxygenase-1 protects against Alzheimer’s amyloid-beta(1-42)-induced toxicity via carbon monoxide production. Cell Death & Disease, 5(12), e1569.CrossRefGoogle Scholar
  24. 24.
    Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664.CrossRefGoogle Scholar
  25. 25.
    Fossati, S., Giannoni, P., Solesio, M. E., Cocklin, S. L., Cabrera, E., Ghiso, J., & Rostagno, A. (2016). The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiology of Disease, 86, 29–40.CrossRefGoogle Scholar
  26. 26.
    Spilovska, K., Korabecny, J., Nepovimova, E., Dolezal, R., Mezeiova, E., Soukup, O., & Kuca, K. (2017). Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Current Topics in Medicinal Chemistry, 17(9), 1006–1026.CrossRefGoogle Scholar
  27. 27.
    Zhao, J. M., Li, L., Chen, L., Shi, Y., Li, Y. W., Shang, H. X., Wu, L. Y., Weng, Z. J., Bao, C. H., & Wu, H. G. (2017). Comparison of the analgesic effects between electro-acupuncture and moxibustion with visceral hypersensitivity rats in irritable bowel syndrome. World Journal of Gastroenterology, 23(16), 2928–2939.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qiubo Chu
    • 1
    • 2
  • Yanfeng Zhu
    • 2
  • Tianjiao Cao
    • 2
  • Yi Zhang
    • 2
  • Zecheng Chang
    • 3
  • Yan Liu
    • 2
  • Jiahui Lu
    • 2
  • Yizhi Zhang
    • 1
    Email author
  1. 1.Department of Neurology, the Second Hospital of Jilin UniversityJilin UniversityChangchunChina
  2. 2.School of Life SciencesJilin UniversityChangchunChina
  3. 3.School of Public HealthJilin UniversityChangchunChina

Personalised recommendations