Applied Biochemistry and Biotechnology

, Volume 189, Issue 4, pp 1291–1303 | Cite as

Antimicrobial Mechanism of Hydroquinone

  • Changyang Ma
  • Nan He
  • Yingying Zhao
  • Dandan Xia
  • Jinfeng WeiEmail author
  • Wenyi KangEmail author


With growing concern about the possible risks and side effects of antibiotic drugs, more and more natural products with antibacterial activity are studied as the substitutes. In this paper, the antibacterial activity of hydroquinone and arbutin in Ainsliaea bonatii was investigated, which both displayed relatively strong antibacterial activity against Staphylococcus aureus (SA), methicillin-resistant S. aureus (MRSA), and extended spectrum β-lactamase S. aureus (ESBL-SA). The antibacterial mechanism of hydroquinone had been explored by scanning electron microscopy (SEM), alkaline phosphatase (AKP), and bacterial extracellular protein leakage. Results showed that hydroquinone could destroy the bacterial cell wall and membrane, increase permeability, lead leakage of intracellular substance affect synthesis of protein, and influence expression of genes.


Ainsliaea bonatii Hydroquinone Arbutin Antibacterial mechanism Staphylococcus aureus 



We gratefully acknowledge the valuable cooperation of the members of the National Center for Research and Development of Edible Fungus Processing Technology, Henan University, in the experiments.

Funding Sources

This work was supported by grant (2017YFC1601400) from the Ministry of Science and Technology of the People’s Republic of China and grant (182102110332) from the Scientific and Technology Department of Henan Province.

Compliance with Ethical Standards

Statement of Ethics

We declare that the ethical background of this study was approved by the National Ethical Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Olson, M. E., King, J. M., Yahr, T. L., & Horswill, A. R. (2013). Sialic Acid Catabolism in Staphylococcus aureus. Journal of Bacteriology, 195(8), 1779–1788.CrossRefGoogle Scholar
  2. 2.
    Editorial Board of Chinese Academy of Sciences Flora. (1996). Flora of China. Beijing: Science Press.Google Scholar
  3. 3.
    Wang, W., & Kang, W. Y. (2013).Chemical constituents from Ainsliaea bonatii, Chinese Pharmaceutical Journal, 48(3), 174–176.Google Scholar
  4. 4.
    Zhao, M. Q., Shen, H. Y., Pan, W., Wang, J. Y., Li, Y. G., & Chang, Y. (2011). Chin Anim Husb Vet Med, 38(5), 177–181.Google Scholar
  5. 5.
    Jiang, X. F., Hong, X. H., Sun, J. Y., Chen, Y. L., & Ni, Y. X. (2002).Analysis of beta-lactamase in multi-resistant Pseudomonas aeruginosa, Chinese Journal of Microbiology and Immunology, 22(4), 443–446.Google Scholar
  6. 6.
    Wang, M. G. (2006). Research about the drug resistance and plasmid-mediated resistance mechanism of quinolones, National Medical Journal of China, 86(9), 645–647.Google Scholar
  7. 7.
    McKeegan, K. S., Borges-Walmsley, M. I., & Walmsley, A. R. (2003). The structure and function of drug pumps: an update. Trends in Microbiology, 11(1), 21–29.CrossRefGoogle Scholar
  8. 8.
    Keith, P. (2001). Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria, Current Opinion in Microbiology, 4(5), 500–508.Google Scholar
  9. 9.
    Kalkhambkar, R. G., Waters, S. N., & Laali, K. K. (2011). Highly efficient synthesis of amides via Ritter chemistry with ionic liquids. Tetrahedron Letters, 52(8), 867–871.CrossRefGoogle Scholar
  10. 10.
    Ali, N. A. A., Jülich, W. D., Kusnick, C., & Lindequist, U. (2001). Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities. Journal of Ethnopharmacology, 74(2), 173–179.CrossRefGoogle Scholar
  11. 11.
    Liu, G., Ma, Y. M., & Zhang, H. C. (2013).Isolation, identification and antimicrobial activities of endophytic fungi from Cephalotaxus fortunei​ , Chinese Pharmaceutical Journal, 48(3), 165–170.Google Scholar
  12. 12.
    Li, C. Q., Zhao, L., Yang, Y. T., & Kang, W. Y. (2011). Antimicrobial activity of Salvia miltiorrhiza and different processed products, Chinese Traditional Patent Medicine., 33(11), 1948–1951.Google Scholar
  13. 13.
    Liu, H. Y., Zhao, D., Chang, J., Yan, L., Zhao, F. J., Wu, Y. C., Xu, T., Gong, T., Chen, L., He, N. N., Wu, Y., Han, S. Q., & Qu, D. (2014). Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Applied Microbiology and Biotechnology, 98(13), 6003–6013.CrossRefGoogle Scholar
  14. 14.
    He, N., Zhou, J., Hu, M. Y., Ma, C. Y., & Kang, W. Y. (2018). The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L. Open Chemistry, 16(1), 882–889.CrossRefGoogle Scholar
  15. 15.
    Gu, Y. P., Liu, H. Z., & Luo, P. (2014).Antimicrobial effects of chitosan on the main pathogens from urinary tract infection in vitroApplied Chemical Industry., 43(7), 1184–1188.Google Scholar
  16. 16.
    Xu, Y. Y., Cai, S. S., & Yu, J. (2014). Scavenging ability for nitrite and antibacterial mechanism of phytosterol from Cortex moriModern Food Science and Technology., 30(2), 53–57.Google Scholar
  17. 17.
    Lan, W. Q., Xie, J., Hou, W. F., & Li, D. W. (2012). Antimicrobial activity and mechanism of complex biological fresh-keeping agents against Staphylococcus sciuriNatural Product Research and Development, 24(6), 741–746 753.Google Scholar
  18. 18.
    Lee, H. J., Choi, G. J., & Cho, K. Y. (1998). Correlation of Lipid Peroxidation inBotrytiscinereaCaused by Dicarboximide Fungicides with Their Fungicidal Activity. Journal of Agricultural and Food Chemistry, 46(2), 737–740.CrossRefGoogle Scholar
  19. 19.
    He, N., Wang, P. Q., Wang, P. Y., Ma, C. Y., & Kang, W. Y. (2018). Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complementary and Alternative Medicine, 18(1), 261–269.CrossRefGoogle Scholar
  20. 20.
    Hara, S., & Yamakawa, M. (1995). Bombyx mori. Journal of Biochemistry, 270(50), 29923–229927.Google Scholar
  21. 21.
    Jing, Y. J., Hao, Y. J., Qu, H., Shan, Y., Li, D. S., & Du, R. Q. (2006). Preliminary studies on antibacterial mechanism and analysis of antibacterial activity of chitosans, Chinese Journal of Antibiotics, 31(6), 361–365.Google Scholar
  22. 22.
    Wang Q. (2011). Master thesis, Liaoning Normal University, Henan, China.Google Scholar
  23. 23.
    Liu, S. X., Wei, H. P., Cheng, J., & Yang, J. Q. (2012).Studies on antibacterial mechanism of the volatile oils from Eupatorium adenophorum Spreng on Staphylococcus aureusChin J Hosp Pharm, 32(21), 1742–1745.Google Scholar
  24. 24.
    Qiang, W., Wang, H. L., Zhou, C. F., & Suo, Y. R. (2011).Determination of protein contents from Caragana korshinskii Kom. seeds using coomassie brilliant blue g-250 dyeing, Amino Acids and Biotic Resources., 33(3), 74–76.Google Scholar
  25. 25.
    Yuan, J. L. (2015). Microbiology (9th ed.). Beijing: China Traditional Medicine Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National R&D Center for Edible Fungus Processing TechnologyHenan UniversityKaifengChina
  2. 2.Kaifeng Key Laboratory of Functional Components in Health FoodHenan UniversityKaifengChina
  3. 3.Joint International Research Laboratory of Food & Medicine Resource FunctionKaifengChina

Personalised recommendations