Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 4, pp 1304–1317 | Cite as

Cloning, Characterization, and Functional Expression of a Thermostable Type B Feruloyl Esterase from Thermophilic Thielavia Terrestris

  • Zhen Meng
  • Qin-Zheng Yang
  • Jing-zhen Wang
  • Yun-Hua HouEmail author
Article

Abstract

Feruloyl esterases (FAEs) have great potential applications in paper and breeding industry. A new thermo-stable feruloyl esterase gene, TtfaeB was identified from the thermophilic fungus Thielavia terrestris h408. Deduced protein sequence shares the identity of 67% with FAEB from Neurospora crassa. The expression vector pPIC9K-TtfaeB was successfully constructed and electro-transformed into GS115 strain of Pichia pastoris. One transformant with high feruloyl esterase yield was obtained through plate screening and named TtFAEB1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of fermentation supernatant from transformant TtFAEB1 showed a distinct protein band appearing at the position of about 35-kDa, indicating that TtfaeB gene has been successfully expressed in P. pastoris. The recombinant TtFAEB was purified by affinity chromatography and the specific activity of purified TtFAEB was 6.06 ± 0.72 U/mg. The optimal temperature and pH for purified recombinant TtFAEB was 60 °C and 7.0, respectively. TtFAEB was thermostable, retaining 96.89 and 84.16% of the maximum activity after being treated for 1 h at 50 °C and 60 °C, respectively. Additionally, the enzyme was stable in the pH range 4.5–8.0. The homology model of TtFAEB showed that it consists of a single domain adopting a typical α/β-hydrolase fold and contains a catalytic triad formed by Ser117, Asp201, and His260. TtFAEB in association with xylanase from Trichoderma reesei could release 77.1% of FA from destarched wheat bran. The present results indicated that the recombinant TtFAEB with excellent enzymatic properties is a promising candidate for potential applications in biomass deconstruction and biorefinery.

Key words

Feruloyl esterase Thermostable Thielavia terrestris Heterologous expression 

Notes

Funding Information

This study received financial support from National Natural Science Foundation of China (Grant No. 31570118 and 31800116), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MC039 and ZR2015CM029).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3065_MOESM1_ESM.doc (622 kb)
ESM 1 (DOC 621 kb)

References

  1. 1.
    Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. (2010). Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Applied Microbiology and Biotechnology, 87(1), 195–203.  https://doi.org/10.1007/s00253-010-2441-6.CrossRefPubMedGoogle Scholar
  2. 2.
    Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301–5317.  https://doi.org/10.1007/s00253-014-5732-5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bailey, M. J., & Viikari, L. (1993). Production of xylanases by Aspergillus fumigatus and Aspergillus oryzae on xylan-based media. World Journal of Microbiology and Biotechnology, 9(1), 80–84.CrossRefGoogle Scholar
  4. 4.
    Basit, A., Liu, J., Rahim, K., Jiang, W., & Lou, H. (2018). Thermophilic xylanases: from bench to bottle. Critical Reviews in Biotechnology, 38(7), 989–1002.  https://doi.org/10.1080/07388551.2018.1425662.CrossRefPubMedGoogle Scholar
  5. 5.
    Beaugrand, J., Croner, D., Debeire, P., & Chabbert, B. (2004). Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. Journal of Cereal Science, 40, 223–230.  https://doi.org/10.1016/j.jcs.2004.05.003.CrossRefGoogle Scholar
  6. 6.
    Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., Ishmael, N., John, T., Darmond, C., Moisan, M. C., Henrissat, B., Coutinho, P. M., Lombard, V., Natvig, D. O., Lindquist, E., Schmutz, J., Lucas, S., Harris, P., Powlowski, J., Bellemare, A., Taylor, D., Butler, G., de Vries, R. P., Allijn, I. E., van den Brink, J., Ushinsky, S., Storms, R., Powell, A. J., Paulsen, I. T., Elbourne, L. D., Baker, S. E., Magnuson, J., Laboissiere, S., Clutterbuck, A. J., Martinez, D., Wogulis, M., de Leon, A. L., Rey, M. W., & Tsang, A. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 29(10), 922–927.  https://doi.org/10.1038/nbt.1976.CrossRefPubMedGoogle Scholar
  7. 7.
    Biely, P., Singh, S., & Puchart, V. (2016). Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnology Advances, 34(7), 1260–1274.  https://doi.org/10.1016/j.biotechadv.2016.09.001.CrossRefPubMedGoogle Scholar
  8. 8.
    Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. Journal of Bacteriology, 182(5), 1346–1351.  https://doi.org/10.1128/JB.182.5.1346-1351.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Botos, I., & Wlodawer, A. (2007). The expanding diversity of serine hydrolases. Current Opinion in Structural Biology, 17(6), 683–690.  https://doi.org/10.1016/j.sbi.2007.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  11. 11.
    Brenner, S. (1988). The molecular evolution of genes and proteins: a tale of two serines. Nature, 334(6182), 528–530.  https://doi.org/10.1038/334528a0.CrossRefPubMedGoogle Scholar
  12. 12.
    Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2003). A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. The Biochemical Journal, 370(Pt 2), 417–427.  https://doi.org/10.1042/BJ20020917.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dilokpimol, A., Makela, M. R., Aguilar-Pontes, M. V., Benoit-Gelber, I., Hilden, K. S., & de Vries, R. P. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 9, 231.  https://doi.org/10.1186/s13068-016-0651-6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Donaghy, J. A., Bronnenmeier, K., Soto-Kelly, P. F., & McKay, A. M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. Journal of Applied Microbiology, 88(3), 458–466.  https://doi.org/10.1046/j.1365-2672.2000.00983.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Faulds, C. B., Mandalari, G., LoCurto, R., Bisignano, G., & Waldron, K. W. (2004). Arabinoxylan and mono- and dimeric ferulic acid release from brewer's grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Applied Microbiology and Biotechnology, 64(5), 644–650.  https://doi.org/10.1007/s00253-003-1520-3.CrossRefPubMedGoogle Scholar
  16. 16.
    Garcia-Huante, Y., Cayetano-Cruz, M., Santiago-Hernandez, A., Cano-Ramirez, C., Marsch-Moreno, R., Campos, J. E., Aguilar-Osorio, G., Benitez-Cardoza, C. G., Trejo-Estrada, S., & Hidalgo-Lara, M. E. (2017). The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable beta-1,4-xylanase with exo- and endo-activity. Extremophiles, 21(1), 175–186.  https://doi.org/10.1007/s00792-016-0893-z.CrossRefPubMedGoogle Scholar
  17. 17.
    Gopalan, N., Rodriguez-Duran, L. V., Saucedo-Castaneda, G., & Nampoothiri, K. M. (2015). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresource Technology, 193, 534–544.  https://doi.org/10.1016/j.biortech.2015.06.117.CrossRefPubMedGoogle Scholar
  18. 18.
    Juge, N., Williamson, G., Puigserver, A., Cummings, N. J., Connerton, I. F., & Faulds, C. B. (2001). High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Research, 1(2), 127–132.  https://doi.org/10.1111/j.1567-1364.2001.tb00023.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Komiya, D., Hori, A., Ishida, T., Igarashi, K., Samejima, M., Koseki, T., & Fushinobu, S. (2017). Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis. Applied and Environmental Microbiology, 83(20).  https://doi.org/10.1128/AEM.01251-17.
  20. 20.
    Koseki, T., Fushinobu, S., Ardiansyah, Shirakawa, H., & Komai, M. (2009). Occurrence, properties, and applications of feruloyl esterases. Applied Microbiology and Biotechnology, 84(5), 803–810.  https://doi.org/10.1007/s00253-009-2148-8.CrossRefPubMedGoogle Scholar
  21. 21.
    Kroon, P. A., Williamson, G., Fish, N. M., Archer, D. B., & Belshaw, N. J. (2000). A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. European Journal of Biochemistry, 267(23), 6740–6752.  https://doi.org/10.1046/j.1432-1033.2000.01742.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar, V., Dangi, A. K., & Shukla, P. (2018). Engineering Thermostable Microbial Xylanases Toward its Industrial Applications. Molecular Biotechnology, 60(3), 226–235.  https://doi.org/10.1007/s12033-018-0059-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.  https://doi.org/10.1038/227680a0.CrossRefGoogle Scholar
  24. 24.
    Mathew, S., & Abraham, T. E. (2004). Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Critical Reviews in Biotechnology, 24(2-3), 59–83.  https://doi.org/10.1080/07388550490491467.CrossRefPubMedGoogle Scholar
  25. 25.
    Moukouli, M., Topakas, E., & Christakopoulos, P. (2008). Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Applied Microbiology and Biotechnology, 79(2), 245–254.  https://doi.org/10.1007/s00253-008-1432-3.CrossRefPubMedGoogle Scholar
  26. 26.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.  https://doi.org/10.1002/jcc.20084.CrossRefPubMedGoogle Scholar
  27. 27.
    Rakotoarivonina, H., Hermant, B., Chabbert, B., Touzel, J. P., & Remond, C. (2011). A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Applied Microbiology and Biotechnology, 90(2), 541–552.  https://doi.org/10.1007/s00253-011-3103-z.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosgaard, L., Pedersen, S., Cherry, J. R., Harris, P., & Meyer, A. S. (2006). Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress, 22(2), 493–498.  https://doi.org/10.1021/bp050361o.CrossRefPubMedGoogle Scholar
  29. 29.
    Saulnier, L., & Thibault, J. F. (1999). Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79(3), 396–402.  https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<396::AID-JSFA262>3.0.CO;2-B.CrossRefGoogle Scholar
  30. 30.
    Segato, F., Damasio, A. R., de Lucas, R. C., Squina, F. M., & Prade, R. A. (2014). Genomics review of holocellulose deconstruction by aspergilli. Microbiology and Molecular Biology Reviews, 78(4), 588–613.  https://doi.org/10.1128/MMBR.00019-14.CrossRefPubMedGoogle Scholar
  31. 31.
    Singh, B., Pocas-Fonseca, M. J., Johri, B. N., & Satyanarayana, T. (2016). Thermophilic molds: Biology and applications. Critical Reviews in Microbiology, 42(6), 985–1006.  https://doi.org/10.3109/1040841X.2015.1122572.CrossRefPubMedGoogle Scholar
  32. 32.
    Topakas, E., Stamatis, H., Biely, P., & Christakopoulos, P. (2004). Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Applied Microbiology and Biotechnology, 63(6), 686–690.  https://doi.org/10.1007/s00253-003-1481-6.CrossRefPubMedGoogle Scholar
  33. 33.
    Topakas, E., Moukouli, M., Dimarogona, M., & Christakopoulos, P. (2012). Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 94(2), 399–411.CrossRefGoogle Scholar
  34. 34.
    Wang, L., Zhang, R., Ma, Z., Wang, H., & Ng, T. (2014). A feruloyl esterase (FAE) characterized by relatively high thermostability from the edible mushroom Russula virescens. Applied Biochemistry and Biotechnology, 172(2), 993–1003.  https://doi.org/10.1007/s12010-013-0536-0.CrossRefPubMedGoogle Scholar
  35. 35.
    Watanabe M, Yoshida E, Fukada H, Inoue H, Tokura M, Ishikawa K (2015) Characterization of a feruloyl esterase B from Talaromyces cellulolyticus. Bioscience, Biotechnology, and Biochemistry 79(11):1845-1851 doi:10.1080/09168451.2015.1058700CrossRefGoogle Scholar
  36. 36.
    Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.  https://doi.org/10.1093/nar/gky427.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang, W., Yang, Y., Zhang, L., Xu, H., Guo, X., Yang, X., Dong, B., & Cao, Y. (2017). Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution. Scientific Reports, 7(1), 1587.  https://doi.org/10.1038/s41598-017-01758-5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yin, X., Li, J. F., Wang, J. Q., Tang, C. D., & Wu, M. C. (2013). Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation. Journal of the Science of Food and Agriculture, 93(12), 3016–3023.  https://doi.org/10.1002/jsfa.6134.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, Shandong Provincial Key Laboratory of Microbial EngineeringQilu University of TechnologyJinanP. R. China
  2. 2.State Key Laboratory of Bio-based Materials and Green PapermakingJinanP. R. China

Personalised recommendations