Applied Biochemistry and Biotechnology

, Volume 189, Issue 4, pp 1245–1261 | Cite as

Target Discovery of Novel α-l-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides

  • Bin-Chun LiEmail author
  • Tian Zhang
  • Yan-Qin Li
  • Guo-Bin Ding


As a green and powerful tool, biocatalysis has emerged as a perfect alternative to traditional chemistry. The bottleneck during process development is discovery of novel enzymes with desired properties and independent intellectual property. Herein, we have successfully bioprospected three novel bacterial α-l-rhamnosidases from human fecal metagenome using a combinatorial strategy by high-throughput de novo sequencing combined with in silico searching for catalytic key motifs. All three novel α-l-rhamnosidases shared low sequence identities with reported (< 35%) and putative ones (< 57%) from public database. All three novel α-l-rhamnosidases were over-expressed as soluble form in Escherichia coli with high-level production. Furthermore, all three novel α-l-rhamnosidases hydrolyzed the synthetic substrate p-nitrophenyl α-l-rhamnopyranoside and natural flavonoid glycosides rutin and naringin with some excellent properties, such as high activity in acidic pH, high activity at low or high temperature, and good tolerance for alcohols and DMSO. Our findings would provide a convenient route for target discovery of the promising biocatalysts from the metagenomes for biotransformation and biosynthesis.


α-l-Rhamnosidase  Flavonoid glycoside  High-throughput sequencing  Catalytic key motif  Human fecal metagenome  In silico searching 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 31400684) and the Natural Science Foundation of Shanxi (No. 2014021030-3).

Compliance with Ethical Standards

Our study had been approved by the Committee on the Ethics of Human and Animal Experiments of Shanxi University

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3063_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1281 kb)


  1. 1.
    Burton, S. G., Cowan, D. A., & Woodley, J. M. (2002). The search for the ideal biocatalyst. Nature Biotechnology, 20(1), 37–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Lorenz, P., Liebeton, K., Niehaus, F., & Eck, J. (2002). Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Current Opinion in Biotechnology, 13(6), 572–577.PubMedCrossRefGoogle Scholar
  3. 3.
    Lorenz, P., & Schleper, C. (2002). Metagenome-a challenging source of enzyme discovery. Journal of Molecular Catalysis B: Enzymatic, 19, 13–19.CrossRefGoogle Scholar
  4. 4.
    Lorenz, P., & Eck, J. (2005). Metagenomics and industrial applications. Nature Review Microbiology, 3(6), 510–516.CrossRefGoogle Scholar
  5. 5.
    Madhavan, A., Sindhu, R., Parameswaran, B., Sukumaran, R. K., & Pandey, A. (2017). Metagenome analysis: a powerful tool for enzyme bioprospecting. Applied Biochemistry and Biotechnology, 183(2), 636–651.PubMedCrossRefGoogle Scholar
  6. 6.
    Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., Luo, S., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z., & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331(6016), 463–467.PubMedCrossRefGoogle Scholar
  7. 7.
    Montella, S., Ventorino, V., Lombard, V., Henrissat, B., Pepe, O., & Faraco, V. (2017). Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Scientific Reports, 7(1), 42623.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N. C., Matson, E. G., Ottesen, E. A., Zhang, X., Hernandez, M., Murillo, C., Acosta, L. G., Rigoutsos, I., Tamayo, G., Green, B. D., Chang, C., Rubin, E. M., Mathur, E. J., Robertson, D. E., Hugenholtz, P., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560–565.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, C., Xia, Y., Qu, H., Li, A. D., Liu, R., Wang, Y., & Zhang, T. (2016). Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnology for Biofuels, 9, 138.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhou, M., Guo, P., Wang, T., Gao, L., Yin, H., Cai, C., Gu, J., & Lu, X. (2017). Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnology for Biofuels, 10(1), 198.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Seffernick, J. L., de Souza, M. L., Sadowsky, M. J., & Wackett, L. P. (2001). Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. Journal of Bacteriology, 183(8), 2405–2410.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Glasner, M. E., Fayazmanesh, N., Chiang, R. A., Sakai, A., Jacobson, M. P., Gerlt, J. A., & Babbitt, P. C. (2006). Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily. Journal of Molecular Biology, 360(1), 228–250.PubMedCrossRefGoogle Scholar
  13. 13.
    Gerlt, J. A., Allen, K. N., Almo, S. C., Armstrong, R. N., Babbitt, P. C., Cronan, J. E., Dunaway-Mariano, D., Imker, H. J., Jacobson, M. P., Minor, W., Poulter, C. D., Raushel, F. M., Sali, A., Shoichet, B. K., & Sweedler, J. V. (2011). The enzyme function initiative. Biochemistry, 50(46), 9950–9962.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gerlt, J. A., Bouvier, J. T., Davidson, D. B., Imker, H. J., Sadkhin, B., Slater, D. R., & Whalen, K. L. (2015). Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta, 1854(8), 1019–1037.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Levin, B. J., Huang, Y. Y., Peck, S. C., Wei, Y., Martinez-Del Campo, A., Marks, J. A., Franzosa, E. A., Huttenhower, C., & Balskus, E. P. (2017). A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science, 355(6325), eaai8386.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hohne, M., Schatzle, S., Jochens, H., Robins, K., & Bornscheuer, U. T. (2010). Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 6(11), 807–813.PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang, J., Chen, X., Zhang, D., Wu, Q., & Zhu, D. (2015). Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast. Applied Microbiology and Biotechnology, 99(6), 2613–2621.PubMedCrossRefGoogle Scholar
  18. 18.
    Barriuso, J., Prieto, A., & Martinez, M. J. (2013). Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 14(1), 712.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Henke, E., Pleiss, J., & Bornscheuer, U. T. (2002). Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angewandte Chemie International Edition in English, 41(17), 3211–3213.CrossRefGoogle Scholar
  20. 20.
    Nguyen, G. S., Thompson, M. L., Grogan, G., Bornscheuer, U. T., & Kourist, R. (2011). Identification of novel esterases for the synthesis of sterically demanding chiral alcohols by sequence-structure guided genome mining. Journal of Molecular Catalysis B: Enzymatic, 70(3-4), 88–94.CrossRefGoogle Scholar
  21. 21.
    Fraaije, M. W., Wu, J., Heuts, D. P., van Hellemond, E. W., Spelberg, J. H., & Janssen, D. B. (2005). Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Applied Microbiology and Biotechnology, 66(4), 393–400.PubMedCrossRefGoogle Scholar
  22. 22.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490–D495.PubMedCrossRefGoogle Scholar
  23. 23.
    Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W., & Murata, K. (2007). Crystal structure of glycoside hydrolase family 78 α-L-rhamnosidase from Bacillus sp. GL1. Journal of Molecular Biology, 374(2), 384–398.PubMedCrossRefGoogle Scholar
  24. 24.
    Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., & Kaneko, S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. The Journal of Biological Chemistry, 288(17), 12376–12385.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    O’Neill, E. C., Stevenson, C. E., Paterson, M. J., Rejzek, M., Chauvin, A. L., Lawson, D. M., & Field, R. A. (2015). Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins, 83(9), 1742–1749.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pachl, P., Škerlová, J., Šimčíková, D., Kotik, M., Křenková, A., Mader, P., Brynda, J., Kapešová, J., Křen, V., Otwinowski, Z., & Řezáčová, P. (2018). Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. Acta Crystallographica Section D, 74(11), 1078–1084.CrossRefGoogle Scholar
  27. 27.
    Pitson, S. M., Mutter, M., van den Broek, L. A., Voragen, A. G., & Beldman, G. (1998). Stereochemical course of hydrolysis catalysed by alpha-L-rhamnosyl and alpha-D-galacturonosyl hydrolases from Aspergillus aculeatus. Biochemical and Biophysical Research Communications, 242(3), 552–559.PubMedCrossRefGoogle Scholar
  28. 28.
    Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35(1), 173–179.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, B., Ji, Y., Li, Y., & Ding, G. (2018). Characterization of a glycoside hydrolase family 78 α-L-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech, 8(2), 120.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Review Microbiology, 11(7), 497–504.CrossRefGoogle Scholar
  31. 31.
    Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Liang, Y., Li, B., & Li, Y. (2017). Discovering novel α-L-rhamnosidases based on the metagenomic approach. Chinese Journal Biochemistry Molecular Biology, 33, 66–72.Google Scholar
  33. 33.
    Kumar, S., Stecher, G., & Tamura, K. (2016). Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.PubMedCrossRefGoogle Scholar
  34. 34.
    Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server), W526–W531.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kennedy, J., O’Leary, N. D., Kiran, G. S., Morrissey, J. P., O’Gara, F., Selvin, J., & Dobson, A. D. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology, 111(4), 787–799.PubMedCrossRefGoogle Scholar
  36. 36.
    Tasse, L., Bercovici, J., Pizzut-Serin, S., Robe, P., Tap, J., Klopp, C., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Leclerc, M., Dore, J., Monsan, P., Remaud-Simeon, M., & Potocki-Veronese, G. (2010). Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research, 20(11), 1605–1612.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Thies, S., Rausch, S. C., Kovacic, F., Schmidt-Thaler, A., Wilhelm, S., Rosenau, F., Daniel, R., Streit, W., Pietruszka, J., & Jaeger, K. E. (2016). Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Scientific Reports, 6(1), 27035.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ichinose, H., Fujimoto, Z., & Kaneko, S. (2013). Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Bioscience Biotechnology and Biochemistry, 77(1), 213–216.CrossRefGoogle Scholar
  39. 39.
    Avila, M., Jaquet, M., Moine, D., Requena, T., Peláez, C., Arigoni, F., & Jankovic, I. (2009). Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology, 155(8), 2739–2749.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang, R., Zhang, B. L., Xie, T., Li, G. C., Tuo, Y., & Xiang, Y. T. (2015). Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnology Letters, 37(6), 1257–1264.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of BiotechnologyShanxi UniversityTaiyuanChina

Personalised recommendations