Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 3, pp 987–1006 | Cite as

Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as its Co-substrate: Achieving High Methane Productivity and Yield

  • Sandro P. Sousa
  • Giovanna Lovato
  • Roberta Albanez
  • Suzana M. Ratusznei
  • José A. D. RodriguesEmail author
Article
  • 139 Downloads

Abstract

This study investigated methane production in an anaerobic sequencing batch biofilm reactor (AnSBBR) by co-digesting sugarcane vinasse and cheese whey. The assessment was based on the influence of feed strategy, interaction between cycle time and influent concentration, applied volumetric organic load (OLRA), and temperature over system stability and performance. The system showed flexibility with regard to the feed strategy, but the reduction of cycle time and influent concentration, at the same OLRA, resulted in lower methane productivity. Increasing organic load, up to the value of 15.27 gCOD L−1 day−1, favored the process, increasing methane yield and productivity. Temperature reduction from 30 to 25 °C resulted in worse performance, although increasing it to 35 °C provided similar results to 30 °C. The best results were achieved at an OLRA of 15.27 gCOD L−1 day−1, cycle time of 8 h, fed-batch operation, and temperature of 30 °C. The system achieved soluble COD removal efficiency of 89%, methane productivity of 208.5 molCH4 m−3 day−1 and yield of 15.76 mmolCH4 gCOD−1. The kinetic model fit indicated methanogenesis preference for the hydrogenotrophic route. At the industrial scale estimative, considering a scenario with a sugarcane ethanol plant with ethanol production of 150,896 m3 year−1, it was estimated energy production of 25,544 MWh month−1.

Keywords

AnSBBR Co-digestion Methane Vinasse Whey 

Notes

Funding information

This work was supported by the São Paulo Research Foundation (FAPESP: #2015/06246-7), the National Council for Scientific and Technological Development (CNPq: #443181/2016-0), and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Compliance with Ethical Standards

Conflict of Interest

The authors indicate no potential conflicts of interest.

Supplementary material

12010_2019_3056_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. 1.
    Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology., 98(12), 2321–2334.  https://doi.org/10.1016/j.biortech.2006.09.027.CrossRefPubMedGoogle Scholar
  2. 2.
    Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials., 163(1), 12–25.  https://doi.org/10.1016/j.jhazmat.2008.06.079.CrossRefPubMedGoogle Scholar
  3. 3.
    Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19(2), 63–102.  https://doi.org/10.1016/S0961-9534(00)00017-9.CrossRefGoogle Scholar
  4. 4.
    España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Management and Research, 29(12), 1235–1250.  https://doi.org/10.1177/0734242X10387313.CrossRefPubMedGoogle Scholar
  5. 5.
    Fuess, L. T., Garcia, M. L., & Zaiat, M. (2018). Seasonal characterization of sugarcane vinasse: assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Science of the Total Environment, 634, 29–40.  https://doi.org/10.1016/j.scitotenv.2018.03.326.CrossRefPubMedGoogle Scholar
  6. 6.
    Santos, S. C., Ferreira Rosa, P. R., Sakamoto, I. K., Amâncio Varesche, M. B., & Silva, E. L. (2014). Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. International Journal of Hydrogen Energy, 39(17), 9000–9011.  https://doi.org/10.1016/j.ijhydene.2014.03.241.CrossRefGoogle Scholar
  7. 7.
    Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., & Stinner, W. (2016). Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology., 217, 10–20.  https://doi.org/10.1016/j.biortech.2016.01.110.CrossRefPubMedGoogle Scholar
  8. 8.
    Fuess, L. T., & Garcia, M. L. (2014). Implications of stillage land disposal: a critical review on the impacts of fertigation. Journal of Environmental Management, 145, 210–229.  https://doi.org/10.1016/j.jenvman.2014.07.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.  https://doi.org/10.1016/S0960-8524(00)00023-7.CrossRefGoogle Scholar
  10. 10.
    Shah, F. A., Mahmood, Q., Rashid, N., Pervez, A., Raja, I. A., & Shah, M. M. (2015). Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews., 42, 627–642.  https://doi.org/10.1016/j.rser.2014.10.053.CrossRefGoogle Scholar
  11. 11.
    Hartmann, H., Angelidaki, I., & Ahring, B. K. (2002). Co-digestion of the organic fraction of municipal waste with other waste types. In Biomethanization of the organic fraction of municipal solid wastes (pp. 181–200). London: IWA Publishing.Google Scholar
  12. 12.
    López González, L. M., Pereda Reyes, I., & Romero Romero, O. (2017). Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Management, 68, 139–145.  https://doi.org/10.1016/j.wasman.2017.07.016.CrossRefPubMedGoogle Scholar
  13. 13.
    Albanez, R., Lovato, G., Zaiat, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2016). Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. International Journal of Hydrogen Energy, 41(45), 20473–20484.  https://doi.org/10.1016/j.ijhydene.2016.08.145.CrossRefGoogle Scholar
  14. 14.
    Volpini, V., Lovato, G., Albanez, R., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane generation in an AnSBBR treating effluent from the biohydrogen production from vinasse: optimization, metabolic pathways modeling and scale-up estimation. Renewable Energy, 116(Pt A), 288–198.  https://doi.org/10.1016/j.renene.2017.09.004.CrossRefGoogle Scholar
  15. 15.
    Lovato, G., Albanez, R., Triveloni, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2019). Methane production by co-digesting vinasse and whey in an AnSBBR: effect of mixture ratio and feed strategy. Applied Biochemistry and Biotechnology, 187(1), 28–46.  https://doi.org/10.1007/s12010-018-2802-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147–2160.  https://doi.org/10.1016/j.renene.2006.11.015.CrossRefGoogle Scholar
  17. 17.
    Rico, C., Muñoz, N., Fernández, J., & Rico, J. L. (2015). High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: limits in co-substrates ratio and organic loading rate. Chemical Engineering Journal, 262, 794–802.  https://doi.org/10.1016/j.cej.2014.10.050.CrossRefGoogle Scholar
  18. 18.
    Comino, E., Riggio, V. A., & Rosso, M. (2012). Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresource Technology, 114(Supplement C, 46–53.  https://doi.org/10.1016/j.biortech.2012.02.090.CrossRefPubMedGoogle Scholar
  19. 19.
    Bertin, L., Grilli, S., Spagni, A., & Fava, F. (2013). Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresource Technology, 128(Supplement C, 779–783.  https://doi.org/10.1016/j.biortech.2012.10.118.CrossRefPubMedGoogle Scholar
  20. 20.
    Lovato, G., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2016). Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Applied Biochemistry and Biotechnology, 178(1), 126–143.  https://doi.org/10.1007/s12010-015-1863-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Lovato, G., Albanez, R., Albuquerque, J. N., Cola, P., Celestino, R. S., Vogel, S. E., et al. (2017). Novel insights into the co-digestion of whey with glycerin in an ansbbr: influent composition and concentration, cycle length and feed strategy effect title. In J. A. Daniels (Ed.), Advances in Environmental Research - Volume 58 (1st ed., pp. 161–182). Hauppauge: Nova Science Publishers. Retrieved from https://www.novapublishers.com/catalog/product_info.php?products_id=63189. Accessed 25 May 2018.Google Scholar
  22. 22.
    Gomez-Romero, J., Gonzalez-Garcia, A., Chairez, I., Torres, L., & García-Peña, E. I. (2014). Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. International Journal of Hydrogen Energy, 39(24), 12541–12550.  https://doi.org/10.1016/j.ijhydene.2014.06.050.CrossRefGoogle Scholar
  23. 23.
    Martinez-Garcia, G., Johnson, A. C., Bachmann, R. T., Williams, C. J., Burgoyne, A., & Edyvean, R. G. J. (2007). Two-stage biological treatment of olive mill wastewater with whey as co-substrate. International Biodeterioration & Biodegradation, 59(4), 273–282.  https://doi.org/10.1016/j.ibiod.2007.03.008.CrossRefGoogle Scholar
  24. 24.
    Azbar, N., Keskin, T., & Yuruyen, A. (2008). Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass and Bioenergy, 32(12), 1195–1201.  https://doi.org/10.1016/j.biombioe.2008.03.002.CrossRefGoogle Scholar
  25. 25.
    Ergüder, T., Tezel, U., Güven, E., & Demirer, G. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management, 21(7), 643–650.  https://doi.org/10.1016/S0956-053X(00)00114-8.CrossRefPubMedGoogle Scholar
  26. 26.
    Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110(Supplement C, 48–68.  https://doi.org/10.1016/j.jenvman.2012.05.018.CrossRefPubMedGoogle Scholar
  27. 27.
    Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., de Camargo, E. F. M., & Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology, 55(1), 29–35.  https://doi.org/10.1007/s002530000475.CrossRefPubMedGoogle Scholar
  28. 28.
    Albanez, R., Chiaranda, B. C., Ferreira, R. G., França, A. L. P., Honório, C. D., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology, 178(1), 21–43.  https://doi.org/10.1007/s12010-015-1856-z.CrossRefPubMedGoogle Scholar
  29. 29.
    Almeida, W. A., Ratusznei, S. M., Zaiat, M., & Rodrigues, J. A. D. (2017). AnSBBR applied to biomethane production for vinasse treatment: effects of organic loading, feed strategy and temperature. Brazilian Journal of Chemical Engineering, 34(3), 759–773.  https://doi.org/10.1590/0104-6632.20170343s20150584.CrossRefGoogle Scholar
  30. 30.
    Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Effects of feed time, organic loading and shock loads in anaerobic whey treatment by an AnSBBR with circulation. Applied Biochemistry and Biotechnology, 157(2), 140–158.  https://doi.org/10.1007/s12010-008-8371-4.CrossRefPubMedGoogle Scholar
  31. 31.
    Ramos, A. C. T., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2003). Mass transfer improvement of a fixed-bed anaerobic sequencing batch reactor with liquid-phase circulation. Interciencia, 28(4), 214–219.Google Scholar
  32. 32.
    Zaiat, M., Cabral, A. K. A., & Foresti, E. (1994). Reator anaeróbio horizontal de leito fixo para tratamento de águas residuárias: concepção e avaliação preliminar de desempenho. Revista Brasileira de Engenharia-Caderno de Engenharia Química, 11(2), 33–42.Google Scholar
  33. 33.
    Döll, M. M. R., & Foresti, E. (2010). Efeito do bicarbonato de sódio no tratamento de vinhaça em AnSBBR operado a 55 e 35°C. Engenharia Sanitaria e Ambiental, 15(3), 275–282.CrossRefGoogle Scholar
  34. 34.
    Siqueira, L. M., Damiano, E. S. G., & Silva, E. L. (2013). Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor. Journal of Environmental Science and Health, Part A, 48(13), 1707–1716.  https://doi.org/10.1080/10934529.2013.815535.CrossRefGoogle Scholar
  35. 35.
    Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85(4), 927–935.  https://doi.org/10.1016/j.jenvman.2006.11.001.CrossRefPubMedGoogle Scholar
  36. 36.
    Mockaitis, G., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management, 79(2), 198–206.  https://doi.org/10.1016/j.jenvman.2005.07.001.CrossRefPubMedGoogle Scholar
  37. 37.
    Conab. (2018). Acompanhamento da safra brasileira. In Cana-de-açúcar.Google Scholar
  38. 38.
    FAS-USDA. (2017). Dairy, milk, fluid, dairy, cheese, dairy, butter, dairy, dry whole Milk powder annual dairy report |Brasilia|Brazil|11/29/2017.Google Scholar
  39. 39.
    Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: characterization and treatment. Science of the Total Environment., 445-446, 385–396.  https://doi.org/10.1016/j.scitotenv.2012.12.038.CrossRefPubMedGoogle Scholar
  40. 40.
    APHA/AWWA/WEF. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington DC: American Public Health Association.Google Scholar
  41. 41.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.  https://doi.org/10.1021/ac60111a017.CrossRefGoogle Scholar
  42. 42.
    Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water, 58(370), 406–411.  https://doi.org/10.1016/S0262-1762(99)80122-9.CrossRefGoogle Scholar
  43. 43.
    Harper, S. R., & Pohland, F. G. (1986). Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnology and Bioengineering, 28(4), 585–602.  https://doi.org/10.1002/bit.260280416.CrossRefPubMedGoogle Scholar
  44. 44.
    Perry, R. H., Green, D. W., & Maloney, J. O. (1997). Perry’s chemical engineers’ handbook. (., Ed.) (7 aed.). New York: McGraw-Hill.Google Scholar
  45. 45.
    Novaes, L. F., Borges, L. O., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Effect of fill time on the performance of pilot-scale ASBR and AnSBBR applied to sanitary wastewater treatment. Applied Biochemistry and Biotechnology, 162(3), 885–899.  https://doi.org/10.1007/s12010-009-8803-9.CrossRefPubMedGoogle Scholar
  46. 46.
    Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 166(8), 2007–2029.  https://doi.org/10.1007/s12010-012-9627-6.CrossRefPubMedGoogle Scholar
  47. 47.
    Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville, Tenn: Archae Press.Google Scholar
  48. 48.
    Hill, D. T., Cobb, S. A., & Bolte, J. P. (1987). Using volatile fatty acid relationships to predict anaerobic digester failure. Transactions of the ASAE, 30(2), 496–501.  https://doi.org/10.13031/2013.31977.CrossRefGoogle Scholar
  49. 49.
    Marchaim, U., & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technology, 43(3), 195–203.  https://doi.org/10.1016/0960-8524(93)90031-6.CrossRefGoogle Scholar
  50. 50.
    Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor: model development and experimental validation. Water Environment Research, 71(7), 1320–1332.CrossRefGoogle Scholar
  51. 51.
    Silva, R. C., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2013). Anaerobic treatment of industrial biodiesel wastewater by an ASBR for methane production. Applied Biochemistry and Biotechnology, 170(1), 105–118.  https://doi.org/10.1007/s12010-013-0171-9.CrossRefPubMedGoogle Scholar
  52. 52.
    Siman, R. R., Borges, A. C., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., Foresti, E., & Borzani, W. (2004). Influence of organic loading on an anaerobic sequencing biofilm batch reactor (ASBBR) as a function of cycle period and wastewater concentration. Journal of Environmental Management, 72(4), 241–247.  https://doi.org/10.1016/j.jenvman.2004.05.004.CrossRefPubMedGoogle Scholar
  53. 53.
    Siqueira, T. S., Albuquerque, J. N., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane production from whey treatment in an AnSBBR at thermophilic condition. In J. Castillo (Ed.), Bioenergy: Prospects, Applications and Future Directions (1st ed., pp. 13–41). Hauppauge, NY: Nova Science Publishers.Google Scholar
  54. 54.
    Fuess, L. T., Kiyuna, L. S. M., Ferraz, A. D. N., Persinoti, G. F., Squina, F. M., Garcia, M. L., & Zaiat, M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, 189, 480–491.  https://doi.org/10.1016/j.apenergy.2016.12.071.CrossRefGoogle Scholar
  55. 55.
    Kalyuzhnyi, S. V., Martinez, E. P., & Martinez, J. R. (1997). Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Bioresource Technology, 60(1), 59–65.  https://doi.org/10.1016/S0960-8524(96)00176-9.CrossRefGoogle Scholar
  56. 56.
    Bergland, W. H., Dinamarca, C., & Bakke, R. (2015). Temperature effects in anaerobic digestion modeling. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), October, 7–9, 2015, Linköping University, Sweden (pp. 261–269). Linköping: Linköping University Electronic Press.  https://doi.org/10.3384/ecp15119261.CrossRefGoogle Scholar
  57. 57.
    Agibert, S. A. C., Moreira, M. B., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2007). Influence of temperature on performance of an anaerobic sequencing biofilm batch reactor with circulation applied to treatment of low-strength wastewater. Applied Biochemistry and Biotechnology, 136(2), 193–206.  https://doi.org/10.1007/BF02686017.CrossRefPubMedGoogle Scholar
  58. 58.
    Bergamo, C. M., Di Monaco, R., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Effects of temperature at different organic loading levels on the performance of a fluidized-bed anaerobic sequencing batch bioreactor. Chemical Engineering and Processing: Process Intensification, 48(3), 789–796.  https://doi.org/10.1016/j.cep.2008.10.003.CrossRefGoogle Scholar
  59. 59.
    de Barros, V. G., Duda, R. M., & Oliveira, R. A. d. (2016). Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Brazilian Journal of Microbiology, 47(3), 628–639.  https://doi.org/10.1016/j.bjm.2016.04.021.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zinder, S. H., & Koch, M. (1984). Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Archives of Microbiology, 138(3), 263–272.  https://doi.org/10.1007/BF00402133.CrossRefGoogle Scholar
  61. 61.
    Karakashev, D., Batstone, D. J., Trably, E., & Angelidaki, I. (2006). Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Applied and Environmental Microbiology, 72(7), 5138–5141.  https://doi.org/10.1128/AEM.00489-06.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    van Lier, J. B. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science and Technology, 57(8), 1137–1148.  https://doi.org/10.2166/wst.2008.040.CrossRefPubMedGoogle Scholar
  63. 63.
    EPE. (2017). Anuário Estatístico de Energia Elétrica (p. 2017).Google Scholar
  64. 64.
    ANP. (2018). Anuário Estatístico do Peróleo. In Gás Natural e Biocombustíveis (p. 2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.São Carlos School of Engineering (EESC)University of São Paulo (USP)São CarlosBrazil
  2. 2.Mauá School of Engineering (EEM)Mauá Institute of Technology (IMT)São Caetano do SulBrazil

Personalised recommendations