Applied Biochemistry and Biotechnology

, Volume 189, Issue 4, pp 1108–1126 | Cite as

Economic Method for Extraction/Purification of a Burkholderia cepacia Lipase with Potential Biotechnology Application

  • G. S. PadilhaEmail author
  • W. R. Osório


In order to recover biomolecules, a single downstream processing step is carried out. In this sense, an aqueous two-phase system (ATPS) containing polyethylene glycol (PEG) and potassium phosphate salts is used. Intending the purification of Burkholderia cepacia (Bc) lipase, the effects of the molecular masses of 1500 (PEG 1500), 4000 (PEG 4000), and 6000 (PEG 6000), pH (6, 7, and 8) and distinct tie line lengths are perfomed. Although this is reasonable reported in literature, a study covering an economical production aspect considering the Bc is scarce. This characterizes a novelty proposed in this investigation. Lipase is recovered in a polymer phase at lower pH value. PEG 1500/phosphate salt ATPS at pH 6 is considered a good method with ~ 98% of the extraction efficiency. Another contribution of this proposed investigation concerns to a biotechnological material synthesis, which is applied in several advanced and revolutionize engineering practices. Additionally, an economic analysis of the proposed method indicates a minimal sale price (~ US$410/L) inducing to a future and potential commercial application.


Aqueous two-phase systems Burkholderia cepacia lipase Profit Purification Market price 


Funding Information

This work was financially supported by the FAEPEX-UNICAMP (Grant 2194/16).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gadade, P. R., Sardare, M. D., & Chavan, A. R. (2013). Study of extraction of methylene blue from synthetic waste water using liquid emulsion membrane technology. Canadian Journal of Chemical Engineering, 91, 80–89.CrossRefGoogle Scholar
  2. 2.
    Khayati, G., & Alizadeh, S. (2013). Extraction of lipase from Rhodotorula glutinis fermentation culture by aqueous two-phase partitioning. Fluid Phase Equilibria, 353(15), 132–134.CrossRefGoogle Scholar
  3. 3.
    Souza, R. L., Lima, R. A., Coutinho, J. A. P., Soares, C. M. F., & Lima, A. S. (2015). Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Separation and Purification Technology, 155, 118–126.CrossRefGoogle Scholar
  4. 4.
    Carvalho, T., Finotelli, P. V., Bonomo, R. C. F., Franco, M., & Amaral, P. F. F. (2017). Evaluating aqueous two-phase systems for Yarrowia lipolytica extracellular lipase purification. Process Biochemistry, 53, 259–266.CrossRefGoogle Scholar
  5. 5.
    Bassani, G., Farruggia, B., Nerli, B., Romanini, D., & Picó, G. (2007). Porcine pancreatic lipase partition in potassium phosphate–polyethylene glycol aqueous two-phase systems. Journal of Chromatography, 859A, 222–228.Google Scholar
  6. 6.
    Albertsson, P. A. (1986). Partition of cell particles and macromolecules. New York: John Willey.Google Scholar
  7. 7.
    Diamond, A. D., & Hsu, J. T. (1992). Aqueous two-phase systems for biomolecule separation. Advances in Biochemical Engineering, 47, 89–135.Google Scholar
  8. 8.
    Zaslasvsky, B. Y. (1994). Aqueous two-phase partitioning - physical chemistry and bioanalytical applications. New York: CRC press.Google Scholar
  9. 9.
    Padilha, G. S., Santana, J. C. C., Alegre, R. M., & Tambourgi, E. B. (2012). Extraction of lipase from Burkholderia cepacia by PEG/phosphate ATPS and its biochemical characterization. Brazilian Archives of Biology and Technology, 55(1), 7–19.CrossRefGoogle Scholar
  10. 10.
    Duarte, A. W. F., Lopes, A. M., Molino, J. V. D., Pessoa, A., & Sette, L. D. (2015). Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separation and Purification Technology, 156, 215–225.CrossRefGoogle Scholar
  11. 11.
    Tan, C. H., Show, P. L., Ooi, C. W., Ng, E. P., Lan, J. C. W., & Ling, T. C. (2015). Novel lipase purification methods – a review of the latest developments. Biotechnol., 10(1), 31–44.Google Scholar
  12. 12.
    Raja, S., Murty, V. R., Thivaharan, V., Vinayagam, R., & Ramesh, V. (2011). Aqueous two phase systems for the recovery of biomolecules—a review. Science and Technology, 1(1), 7–16.CrossRefGoogle Scholar
  13. 13.
    Ventura, S. P. M., Sousa, S. G., Freire, M. G., Serafim, L. S., & Coutinho, J. A. P. (2011). Design of ionic liquids for lipase purification. Journal of Chromatography, 879B(26), 2679–2687.Google Scholar
  14. 14.
    Sharma, P., Sharma, N., Sharma, P., Pathania, S., & Handa, S. (2017). Purification and characterization of a halotolerant and thermotolerant lipase produced from a novel bacteria Brevibacterium halotolerans PS4 IKX671556I and its application in detergent formulations. Proceedings of the Indian National Science Academy, 22(3), 681–687. Scholar
  15. 15.
    Sun, J., Yu, B., Curran, P., & Liu, S. Q. (2012). Optimisation of flavour ester biosynthesis in an aqueous system of coconut cream and fusel oil catalysed by lipase. Food Chemistry, 135(4), 2714–2720.PubMedCrossRefGoogle Scholar
  16. 16.
    Ivić, J. T., Veličković, D., Dimitrijević, A., Bezbradica, D., Dragačević, V., Jankulović, M. G., & Milosavić, N. (2016). Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Journal of Science and Food Agriculture, 96(12), 4281–4287.CrossRefGoogle Scholar
  17. 17.
    Gutiérrez, A., Del Rio, J. C., & Martínez, A. T. (2009). Microbial and enzymatic control of pitch in the pulp and paper industry. Applied Microbiology and Biotechnology, 82(6), 1005–1018.PubMedCrossRefGoogle Scholar
  18. 18.
    Ünlü, A., Tanriseven, A., Sezen, I. Y., & Çelik, A. (2015). A new lipase as a pharmaceutical target for battling infections caused by Staphylococcus aureus, gene cloning and biochemical characterization. Biotechnology and Applied Biochemistry, 62(5), 642–651.PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare, S. K., & Negi, S. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresource Technology, 120, 300–304.PubMedCrossRefGoogle Scholar
  20. 20.
    Foukis, A., Gkini, O. A., Stergiou, P. Y., Sakkas, V. A., Dima, A., Boura, K., Koutinas, A., & Papamichael, E. M. (2017). Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass. Bioresource Technology, 238, 122–128.PubMedCrossRefGoogle Scholar
  21. 21.
    Åkerman, C. O., Hagström, A. E. V., Mollaahmad, M. A., Karlsson, S., & Hatti-Kaul, R. (2011). Biolubricant synthesis using immobilised lipase: process optimisation of trimethylolpropane oleate production. Process Biochemistry, 46(12), 2225–2231.CrossRefGoogle Scholar
  22. 22.
    Padilha, G. S., Tambourgi, E. B., & Monte Alegre, R. (2018). Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chemical Engineering Communications, 205(1), 23–33.CrossRefGoogle Scholar
  23. 23.
    Mhetras, N. C., Bastawde, K. B., & Gokdale, D. V. (2009). Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresource Technology, 100(3), 1486–1490.PubMedCrossRefGoogle Scholar
  24. 24.
    Gaikaiwari, R. P., Wagh, S. A., & Kulkarni, B. D. (2012). Efficient lipase purification using reverse micellar extraction. Bioresource Technology, 108, 224–230.PubMedCrossRefGoogle Scholar
  25. 25.
    Trodler, P., Nieveler, J., Rusnak, M., Schmid, R. D., & Pleiss, J. (2008). Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. Journal of Chromatography, 1179A(2), 161–167.CrossRefGoogle Scholar
  26. 26.
    Zhou, Y. J., Hu, C. L., Wang, N., Zhang, W. W., & Yu, X. Q. (2013). Purification of porcine pancreatic lipase by aqueous two-phase systems of polyethylene glycol and potassium phosphate. Journal of Chromatography, 926, 77–82.PubMedGoogle Scholar
  27. 27.
    Lopes, F. L. G., Severo, J. J. B., Souza, R. R., Ehrhardt, D. D., Santana, J. C. C., & Tambourgi, E. B. (2009). Concentration by membrane separation processes of a medicinal product obtained from pineapple pulp. Brazilian Archives of Biology and Technology, 52(2), 457–464.CrossRefGoogle Scholar
  28. 28.
    Lopes, F. L. G., Sbruzzi, D., Barros, K. V. G., Ferreira, J. F., Santana, J. C. C., Souza, R. R., & Tambourgi, E. B. (2012). Viability in the production of a drug extracted from Ananas comosus by a flat membrane system. Brazilian Archives of Biology and Technology, 55(3), 465–470.CrossRefGoogle Scholar
  29. 29.
    Sigma, Chemical Company 2018. Accessed from
  30. 30.
    Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. (1991). Extracellular lipase of Pseudomonas sp strain ATCC 21808, purification, characterization, crystallization and preliminary X-ray diffraction data. Journal of Bacteriology, 177, 4836–4841.CrossRefGoogle Scholar
  31. 31.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  32. 32.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature., 227(5259), 680–685.PubMedCrossRefGoogle Scholar
  33. 33.
    Almeida, P. F., Silva, J. R., Lannes, S. C. L., Farias, T. M. B., & Santana, J. C. C. (2013). Quality assurance and economic feasibility of an innovative product obtained from a byproduct of the meat industry in Brazil. African Journal of Business Management, 7(27), 2745–2756.Google Scholar
  34. 34.
    Cafferky, M. E., & Wentworth, J. (2014). Breakeven analysis, the definitive guide to cost-volume-profit analysis (Second ed.). Business Expert Press.Google Scholar
  35. 35.
    Huddleston, J. G., Ottomar, K. W., Ngonyani, D. M., & Lyddiatt, A. (1991). Influence of system and molecular parameters upon fractionation of intracellular proteins from Saccharomyces by aqueous two-phase partition. Enzyme and Microbial Technology, 13(1), 24–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Show, P. L., Tan, C. P., Anuar, M. S., Ariff, A., Yusof, Y. A., Chen, S. K., & Ling, T. C. (2012). Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresource Technology, 116, 226–233.PubMedCrossRefGoogle Scholar
  37. 37.
    Kavakçıoglu, B., & Tarhan, L. (2013). Initial purification of catalase from Phanerochaete chrysosporium by partitioning in poly(ethylene glycol)/salt aqueous two phase systems. Separation and Purification Technology, 105, 8–14.CrossRefGoogle Scholar
  38. 38.
    Kavakçıoglu, B., Tongul, B., & Tarhan, L. (2016). Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 380–388.PubMedCrossRefGoogle Scholar
  39. 39.
    Rabe, M., Verdes, D., & Seeger, S. (2011). Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 162(1-2), 87–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Jiang, Z. G., Zhang, H. D., & Wang, W. T. (2015). Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems. Journal of Separation Science, 38(8), 1426–1432.PubMedCrossRefGoogle Scholar
  41. 41.
    Chew, L. C., Annuar, M. S. M., Show, P. L., & Ling, T. C. (2015). Extractive bioconversion of poly-caprolactone by Burkholderia cepacia lipase in an aqueous two-phase system. Biochemical Engineering Journal, 101, 9–17.CrossRefGoogle Scholar
  42. 42.
    Ramakrishnan, V., Goveas, L. C., Suralikerimath, N., Jampani, C., Halami, P. M., & Narayan, B. (2016). Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatalysis and Agricultural Biotechnology, 6, 19–27.CrossRefGoogle Scholar
  43. 43.
    Chow, Y. H., Yap, Y. J., Tan, C. P., Anuar, M. S., Tejo, B. A., Show, P. L., Ariff, A. B., Ng, E. P., & Ling, T. C. (2015). Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems. Journal of Bioscience and Bioengineering, 120(1), 85–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Gaither N, Faizer G (1999) Production and operations management. Octave Edition, South-Western Publishing Co.Google Scholar
  45. 45.
    Shepherd R (1981). Theory of cost and production functions. Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Applied Sciences/FCA, Research Group in Manufacturing of Advanced MaterialsUniversity of CampinasLimeiraBrazil
  2. 2.School of TechnologyUniversity of CampinasLimeiraBrazil

Personalised recommendations