Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 3, pp 1020–1037 | Cite as

Production of a Recombinant α-l-Rhamnosidase from Aspergillus niger CCTCC M 2018240 in Pichia pastoris

  • Deqing Wang
  • Pu ZhengEmail author
  • Pengcheng Chen
Article
  • 178 Downloads

Abstract

α-l-Rhamnosidases have wide application in the field of biotechnology for derhamnosylation of many natural glycosides. In this study, an α-l-rhamnosidase-producing strain, Aspergillus niger CCTCC M 2018240, was isolated from decayed orange peels, and the gene encoding α-l-rhamnosidase was successfully expressed in Pichia pastoris GS115. Three-dimensional structure simulation indicates the enzyme is a member of glycoside hydrolase 78 family. The optimal recombinant strain GS115/pPIC9K-rha-14 exhibited an enzyme activity of 0.47 U/mL when cultured in shaking flasks, and the recombinant α-l-rhamnosidase hydrolyzed α-1,2 and α-1,6 glycosidic bonds in naringin and rutin, respectively, thus generating prunin and isoquercitrin, respectively. Through high density-induced fermentation based on a glycerol feeding strategy in a 3-L bioreactor, the enzyme activity reached 46.87 U/mL after 7 days of methanol incubation, which was approximately 99 times higher than that produced in shaking flasks. This process offers a simple and effective approach for the large-scale production of α-l-rhamnosidase.

Keywords

α-L-Rhamnosidase Aspergillus niger Pichia pastoris Heterologous expression Fermentation 

Notes

Funding

The authors are grateful to the financial supports from the National First-class Discipline Program of Light Industry Technology and Engineering (Grant No. LITE2018-04) and the Topnotch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3020_MOESM1_ESM.docx (557 kb)
ESM 1 (DOCX 556 kb)

References

  1. 1.
    Yadav, V., Yadav, P. K., Yadav, S., & Yadav, K. D. S. (2010). α-L-Rhamnosidase: a review. Process Biochemistry, 45(8), 1226–1235.Google Scholar
  2. 2.
    Li, L. J., Wu, Z. Y., Yu, Y., Zhang, L. J., Zhu, Y. B., Ni, H., & Chen, F. (2018). Development and characterization of an α-L-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chemistry, 245, 1070–1078.PubMedGoogle Scholar
  3. 3.
    Gallego, M. V., Piñaga, F., Ramón, D., & Vallés, S. (2010). Purification and characterization of an α-L-rhamnosidase from Aspergillus terreus of interest in winemaking. Journal of Food Science, 66, 204–209.Google Scholar
  4. 4.
    Meiwes, J., Wullbrandt, D., & Giani, C. (1997). Alpha-L-Rhamnosidase for obtaining rhamnose, a process for its preparation and its use. US Patent 5468625.Google Scholar
  5. 5.
    Zhang, R., Zhang, B. L., Xie, T., Li, G. C., Tuo, Y., & Xiang, Y. T. (2015). Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnology Letters, 37(6), 1257–1264.PubMedGoogle Scholar
  6. 6.
    Ni, H., Xiao, A. F., Cai, H. N., Chen, F., You, Q., & Lu, Y. Z. (2012). Purification and characterization of Aspergillus niger α-L-rhamnosidase for the biotransformation of naringin to prunin. African Journal of Microbiology Research, 6, 5276–5284.Google Scholar
  7. 7.
    Davies, G. J., Gloster, T. M., & Henrissat, B. (2005). Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 15(6), 637–645.PubMedGoogle Scholar
  8. 8.
    Jang, I. S., & Kim, D. H. (1996). Purification and characterization of α-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biological & Pharmaceutical Bulletin, 19(12), 1546–1549.Google Scholar
  9. 9.
    Miake, F., Satho, T., Takesue, H., Yanagida, F., Kashige, N., & Watanabe, K. (2000). Purification and characterization of intracellular α-L-rhamnosidase from Pseudomonas paucimobilis FP2001. Archives of Microbiology, 173(1), 65–70.PubMedGoogle Scholar
  10. 10.
    Park, S. Y., Kim, J. H., & Kim, D. H. (2005). Purification and characterization of quercitrin-hydrolyzing α-L-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. Journal of Microbiology and Biotechnology, 15, 519–524.Google Scholar
  11. 11.
    Orrillo, A. G., Ledesma, P., Delgado, O. D., Spagna, G., & Breccia, J. D. (2007). Cold-active α-L-rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enzyme and Microbial Technology, 40(2), 236–241.Google Scholar
  12. 12.
    Puri, M., & Kaur, A. (2010). Molecular identification of Staphylococcus xylosus MAK2, a new α-L-rhamnosidase producer. World Journal of Microbiology and Biotechnology, 26(6), 963–968.Google Scholar
  13. 13.
    Alvarenga, A. E., Romero, C. M., & Castro, G. R. (2013). A novel α-L-rhamnosidase with potential applications in citrus juice industry and in winemaking. European Food Research and Technology, 237(6), 977–985.Google Scholar
  14. 14.
    Yanai, T., & Sato, M. (2000). Purification and characterization of α-L-rhamnosidase from Pichia angusta X349. Bioscience, Biotechnology, and Biochemistry, 64(10), 2179–2185.PubMedGoogle Scholar
  15. 15.
    Rodríguez, M. E., Lopes, C. A., Valles, S., & Caballero, A. C. (2010). Characterization of α-rhamnosidase activity from a Patagonian Pichia guilliermondii wine strain. Journal of Applied Microbiology, 109(6), 2206–2213.PubMedGoogle Scholar
  16. 16.
    Singh, P., Sahota, P. P., Bhadra, F., & Singh, R. K. (2015). Optimization, production and scale up of debittered kinnow beverage by α-L-rhamnosidase producing yeast. Emirates Journal of Food and Agriculture, 27(7), 548–555.Google Scholar
  17. 17.
    Manzanares, P., Orejas, M., Ibañez, E., Vallés, S., & Ramón, D. (2000). Purification and characterization of an α-L-rhamnosidase from Aspergillus nidulans. Letters in Applied Microbiology, 31(3), 198–202.PubMedGoogle Scholar
  18. 18.
    Yadav, V., Yadav, S., Yadava, S., & Yadav, K. D. S. (2011). α-L-Rhamnosidase from Aspergillus flavus MTCC-9606 isolated from lemon fruit peel. International Journal of Food Science and Technology, 46(2), 350–357.Google Scholar
  19. 19.
    Ge, L., Xie, J. C., Wu, T., Zhang, S. S., Zhao, L. G., Ding, G., Wang, Z. Z., & Xiao, W. (2017). Purification and characterisation of a novel α-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. International Journal of Food Science and Technology, 52(12), 2596–2603.Google Scholar
  20. 20.
    Rajal, V. B., Cid, A. G., Ellenrieder, G., & Cuevas, C. M. (2009). Production, partial purification and characterization of α-L-rhamnosidase from Penicillium ulaiense. World Journal of Microbiology and Biotechnology, 25(6), 1025–1033.Google Scholar
  21. 21.
    Yadav, S., Yadav, V., Yadav, S., & Yadav, K. D. S. (2012). Purification, characterisation and application of α-L-rhamnosidase from Penicillium citrinum MTCC-8897. International Journal of Food Science and Technology, 47(2), 290–298.Google Scholar
  22. 22.
    Yadav, S., Yadava, S., & Yadav, K. D. S. (2013). Purification and characterization of α-L-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochemistry, 48(9), 1348–1354.Google Scholar
  23. 23.
    Yadav, S., Yadava, S., & Yadav, K. D. S. (2017). α-L-rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorganic Chemistry, 70, 222–228.PubMedGoogle Scholar
  24. 24.
    Rojas, N. L., Voget, C. E., Hours, R. A., & Cavalitto, S. F. (2011). Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus. Journal of Industrial Microbiology & Biotechnology, 38(9), 1515–1522.Google Scholar
  25. 25.
    Feng, B., Hu, W., Ma, B. P., Wang, Y. Z., Huang, H. Z., Wang, S. Q., & Qian, X. H. (2007). Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Applied Microbiology and Biotechnology, 76(6), 1329–1338.PubMedGoogle Scholar
  26. 26.
    Zhu, Y. P., Jia, H. Y., Xi, M. L., Xu, L. Y., Wu, S. M., & Li, X. T. (2017). Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chemistry, 214, 39–46.PubMedGoogle Scholar
  27. 27.
    Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35(1), 173–179.PubMedGoogle Scholar
  28. 28.
    Hashimoto, W., Miyake, O., Nankai, H., & Murata, K. (2003). Molecular identification of an α-L-rhamnosidase from Bacillus sp. strain GL1 as an enzyme involved in complete metabolism of gellan. Archives of Biochemistry and Biophysics, 415(2), 235–244.PubMedGoogle Scholar
  29. 29.
    Birgisson, H., Hreggvidsson, G. O., Fridjónsson, O. H., Mort, A., Kristjánsson, J. K., & Mattiasson, B. (2004). Two new thermostable α-L-rhamnosidases from a novel thermophilic bacterium. Enzyme and Microbial Technology, 34(6), 561–571.Google Scholar
  30. 30.
    Beekwilder, J., Marcozzi, D., Vecchi, S., Vos, R. D., Janssen, P., Francke, C., Vlieg, J. V. H., & Hall, R. D. (2009). Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Applied and Environmental Microbiology, 75(11), 3447–3454.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ichinose, H., Fujimoto, Z., & Kaneko, S. (2013). Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Bioscience, Biotechnology, and Biochemistry, 77(1), 213–216.PubMedGoogle Scholar
  32. 32.
    Bang, S. H., Hyun, Y. J., Shim, J., Hong, S. W., & Kim, D. H. (2015). Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. Journal of Microbiology and Biotechnology, 25(1), 18–25.PubMedGoogle Scholar
  33. 33.
    Wu, T., Pei, J. J., Ge, L., Wang, Z. Z., Ding, G., Xiao, W., & Zhao, L. G. (2018). Characterization of a α-L-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorganic Chemistry, 81, 461–467.PubMedGoogle Scholar
  34. 34.
    Manzanares, P., Orejas, M., Gil, J. V., Graaff, L. H., Visser, J., & Ramón, D. (2003). Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an α-L-Rhamnosidase of enological interest. Applied and Environmental Microbiology, 69(12), 7558–7562.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Koseki, T., Mese, Y., Nishibori, N., Masaki, K., Fujii, T., Handa, T., Yamane, Y., Shiono, Y., Murayama, T., & Iefuji, H. (2008). Characterization of an α-L-rhamnosidase from Aspergillus kawachii and its gene. Applied Microbiology and Biotechnology, 80(6), 1007–1013.PubMedGoogle Scholar
  36. 36.
    Gerstorferová, D., Fliedrová, B., Halada, P., Marhol, P., Křen, V., & Weignerováa, L. (2012). Recombinant α-L-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochemistry, 47(5), 828–835.Google Scholar
  37. 37.
    Markošová, K., Weignerová, L., Rosenberg, M., Křen, V., & Rebroš, M. (2015). Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris MutS strain. Frontiers in Microbiology, 6, 1140.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu, Q., Lu, L. L., & Xiao, M. (2012). Cell surface engineering of α-L-rhamnosidase for naringin hydrolysis. Bioresource Technology, 123, 144–149.PubMedGoogle Scholar
  39. 39.
    Li, L. J., Yu, Y., Zhang, X., Jiang, Z. D., Zhu, Y. B., Xiao, A. F., Ni, H., & Chen, F. (2016). Expression and biochemical characterization of recombinant α-L-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528. International Journal of Biological Macromolecules, 85, 391–399.PubMedGoogle Scholar
  40. 40.
    Ishikawa, M., Shiono, Y., & Koseki, T. (2017). Biochemical characterization of Aspergillus oryzae recombinant α-L-rhamnosidase expressed in Pichia pastoris. Journal of Bioscience and Bioengineering, 124(6), 630–634.PubMedGoogle Scholar
  41. 41.
    Chen, Y. Y., Prior, B. A., Shi, G. Y., & Wang, Z. X. (2011). A rapid PCR-based approach for molecular identification of filamentous fungi. Journal of Microbiology, 49(4), 675–679.Google Scholar
  42. 42.
    Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.Google Scholar
  44. 44.
    Lambin, P., Rochu, D., & Fine, J. M. (1976). A new method for determination of molecular weights of proteins by electrophoresis across a sodium dodecyl sulfate (SDS)-polyacrylamide gradient gel. Analytical Biochemistry, 74(2), 567–575.PubMedGoogle Scholar
  45. 45.
    Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W., & Murata, K. (2007). Crystal structure of glycoside hydrolase family 78 α-L-rhamnosidase from Bacillus sp. GL1. Journal of Molecular Biology, 374(2), 384–398.PubMedGoogle Scholar
  46. 46.
    Li, B. C., Ji, Y. R., Li, Y. Q., & Ding, G. B. (2018). Characterization of a glycoside hydrolase family 78 α-L-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech, 8(2), 120.PubMedPubMedCentralGoogle Scholar
  47. 47.
    O’Neill, E. C., Stevenson, C. E. M., Paterson, M. J., Rejzek, M., Chauvin, A. L., Lawson, D. M., & Field, R. A. (2015). Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins, 83(9), 1742–1749.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., & Kaneko, S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. The Journal of Biological Chemistry, 288(17), 12376–12385.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Puri, M., Kaur, A., Schwarz, W. H., Singh, S., & Kennedy, J. F. (2011). Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. International Journal of Biological Macromolecules, 48(1), 58–62.PubMedGoogle Scholar
  50. 50.
    Birgisson, H., Fridjonsson, O., Bahranimougeot, F. K., Hreggvidsson, G. O., Kristjansson, J. K., & Mattiasson, B. (2004). A new thermostable α-L-arabinofuranosidase from a novel thermophilic bacterium. Biotechnology Letters, 26(17), 1347–1351.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations