Skip to main content
Log in

Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (γ-PGA) is a novel biodegradable polyamide material. Microbial fermentation is the only way to produce γ-PGA, but the molecular weight of γ-PGA varied depending on different strains and culture conditions used. The molecular weight of γ-PGA is a main factor affecting the utilization of γ-PGA. It is urgent to find an efficient way to prepare γ-PGA with specific molecular weight, especially low molecular weight. Bacillus subtilis ECUST is a glutamate-dependent strain that produces γ-PGA. In this study, a recombinant B. subtilis harboring the γ-PGA synthase gene cluster pgsBCAE of our preciously identified γ-PGA–producing B. subtilis ECUST was constructed. Assay of γ-PGA contents and properties showed that recombinant B. subtilis 1A751-pBNS2-pgsBCAE obtained the ability to synthesize γ-PGA with low molecular weight (about 10 kDa). The excessive addition of glutamate inhibited the γ-PGA synthesis, while the addition of Zn2+ could promote the synthesis of γ-PGA by increasing the transcription of pgsB but had no effect on the molecular weight of synthesized γ-PGA. Under optimized conditions, γ-PGA produced by recombinant B. subtilis 1A751-pBNS2-pgsBCAE increased from initial 0.54 g/L to 3.9 g/L, and the glutamate conversion rate reached 78%. Recombinant B. subtilis 1A751-pBNS2-pgsBCAE has the potential for efficient preparation of low molecular weight γ-PGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTAB:

cetyltrimethylammonium bromide

γ-PGA:

poly-γ-glutamic acid

PCR:

polymerase chain reaction

TLC:

thin-layer chromatography

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Ashiuchi, M., Shimanouchi, K., Nakamura, H., Kameil, T., Soda, K., Park, C., Sung, M., & Misono, H. (2004). Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Applied and Environmental Microbiology, 70(7), 4249–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chatterjee, P. M., Datta, S., Tiwari, D. P., Raval, R., & Dubey, A. K. (2018). Selection of an effective indicator for rapid detection of microorganisms producing γ-polyglutamic acid and its biosynthesis under submerged fermentation conditions using Bacillus methylotrophicus. Applied Biochemistry and Biotechnology, 185(1), 270–288.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, C., Zhang, Y., Wei, X., & Hu, Z. (2013). Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Applied Biochemistry and Biotechnology, 170(3), 562–572.

    Article  CAS  PubMed  Google Scholar 

  4. Tan, J., Wang, H., Xu, F., Chen, Y., Zhang, M., & Peng, H. (2017). Poly-γ-glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. Journal of Materials Chemistry B, 5(6), 1315–1327.

    Article  CAS  Google Scholar 

  5. Guo, Z., Na, Y., Zhu, C., & Gan, L. (2017). Exogenously applied poly-γ-glutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system. Environmental Science & Pollution Research, 24(7), 1–7.

    Article  CAS  Google Scholar 

  6. Shih, I. L., & Van, Y, T. (2001). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79, 207–225, 3.

  7. Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., & Soda, K. (2001). Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology, 57(5–6), 764–769.

    Article  CAS  PubMed  Google Scholar 

  8. Peng, Y., Jiang, B., Zhang, T., Mu, W., Miao, M., & Hua, Y. (2015). High-level production of poly (γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochemistry, 50(3), 329–335.

    Article  CAS  Google Scholar 

  9. Feng, J., Shi, Q., Zhou, G., Wang, L., Chen, A., Xie, X., Huang, X., & Hu, W. (2017). Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochemistry, 56, 30–36.

    Article  CAS  Google Scholar 

  10. Tian, G., Fu, J., Wei, X., Ji, Z., Ma, X., Qi, G. F., & Chen, S. W. (2014). Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02. Journal of Chemical Technology Biotechnology, 89(12), 1825–1832.

    Article  CAS  Google Scholar 

  11. Suzuki, T., & Tahara, Y. (2003). Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation. Journal of Bacteriology, 185(7), 2379–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo, Z., Guo, Y., Liu, J., Hua, Q., Zhao, M., Zou, W., & Li, S. (2016). Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnology for Biofuels, 9(1), 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ashiuchi, M., Soda, K., & Misono, H. (1999). A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells. Biochemical & Biophysical Research Communications, 263(1), 6–12.

    Article  CAS  Google Scholar 

  14. Jiang, H., Shang, L., Yoon, S. H., Lee, S. Y., & Yu, Z. (2006). Optimal production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli. Biotechnology Letters, 28(16), 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  15. Cao, M., Geng, W., Liu, L., Song, C., Xie, H., Guo, W., Jin, Y., & Wang, S. (2011). Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 102(5), 4251–4257.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, B., Li, Z., Zhang, H., Wu, J., & Luo, M. (2016). Cloning and expression of the γ-polyglutamic acid synthetase gene pgsBCA in Bacillus subtilis WB600. BioMed Research International, 2016(6), 1–7.

    Google Scholar 

  17. Sawada, K., Araki, H., Takimura, Y., Masuda, K., Kageyama, Y., & Ozaki, K. (2018). Poly- l -gamma-glutamic acid production by recombinant Bacillus subtilis, without pgsA, gene. AMB Express, 8(1), 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sirisansaneeyakul, S., Cao, M., Kongklom, N., Chuensangjun, C., Shi, Z., & Chisti, Y. (2017). Microbial production of poly-γ-glutamic acid. World Journal of Microbiology and Biotechnology, 33(9), 173.

    Article  CAS  PubMed  Google Scholar 

  19. Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C., & Chisti, Y. (2018). Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnology Advances, 36(5), 1424–1433.

    Article  CAS  PubMed  Google Scholar 

  20. Cai, D., He, P., Lu, X., Zhu, C., Zhu, J., & Zhan, Y. (2017). A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Scientific Reports, 7(1), 43404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai, D., Chen, Y., He, P., Wang, S., Mo, F., & Li, X., Wang Q., Nomura C.T., Wen Z., Ma X., Chen S. (2018). Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology & Bioengineering, 115, 10, 2541, 2553.

    Google Scholar 

  22. Spizizen, J. (1958). Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences, 44(10), 1072–1078.

    Article  CAS  Google Scholar 

  23. Wei, X., Tian, G., Ji, Z., & Chen, S. (2015). A new strategy for enhancement of poly-γ-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. Journal of Chemical Technology & Biotechnology, 90(4), 709–713.

    Article  CAS  Google Scholar 

  24. Goto, A., & Kunioka, M. (2014). Biosynthesis and hydrolysis of poly(-glutamic acid) from IF03335. Bioscience, Biotechnology, and Biochemistry, 56(7), 1031–1035.

    Article  Google Scholar 

  25. Kambourova, M., Tangney, M., & Priest, F. (2001). Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology, 67(2), 1004–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamaguchi, F., Ogawa, Y., Kikuchi, M., Yuasa, K., & Motai, H. (1996). Detection of γ-polyglutamic acid (γ-PGA) by SDS-PAGE. Bioscience, Biotechnology, and Biochemistry, 60(2), 255–258.

    Article  CAS  PubMed  Google Scholar 

  27. Kongklom, N., Luo, H., Shi, Z., Pechyen, C., Chisti, Y., & Sirisansaneeyakui, S. (2015). Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochemical Engineering Journal, 100(15), 67–75.

    Article  CAS  Google Scholar 

  28. Ashiuchi, M., Kamei, T., & Misono, H. (2003). Poly-γ-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis B Enzymatic, 23(2), 101–106.

    Article  CAS  Google Scholar 

  29. Kamei, T., Yamashiro, D., Horiuchii, T., Minouchi, Y., & Ashiuchi, M. (2010). Identification and biochemical characterization of membranous short-chain polyglutamate from Bacillus subtilis. Chemistry & Biodiversity, 7(6), 1563–1572.

    Article  CAS  Google Scholar 

  30. Yamashiro, D., Yoshioka, M., & Ashiuchi, M. (2015). Bacillus subtilis pgsE (formerly ywtc) stimulates poly-γ-glutamate production in the presence of zinc. Biotechnology and Bioengineering, 108(1), 226–230.

    Article  CAS  Google Scholar 

  31. Yu, W., Chen, Z., Ye, H., Liu, P., Li, Z., Wang, Y., Li, Q., Zhong, C., & He, N. (2017). Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis. Microbial Cell Factories, 16(1), 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, Q., Xu, H., Xu, L., & Ouyang, P. (2006). Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis, NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). Process Biochemistry, 41(7), 1650–1655.

    Article  CAS  Google Scholar 

  33. Meng, Y., Dong, G., Zhang, C., Ren, Y., Qu, Y., & Chen, W. (2016). Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto. Biotechnology Letters, 38(4), 673–679.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, B., Qin, P., Xu, Z., Zhu, R., & Meng, Y. (2011). Effects of l2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresource Technology, 10(2), 3595–3598.

    Article  CAS  Google Scholar 

  35. Ashiuchi, M. (2010). Occurrence and biosynthetic mechanism of poly-gamma-glutamic acid. In Amino-acid homopolymers occurring in nature (pp. 77–93). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  36. Mitsunaga, H., Meissner, L., Büchs, J., & Fukusaki, E. (2016). Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis, ATCC 9945 during the fermentation. Journal of Bioscience and Bioengineering, 122(4), 400–405.

    Article  CAS  PubMed  Google Scholar 

  37. Do, T. H., Suzuki, Y., Abe, N., Kaneko, J., Itoh, Y., & Kimura, K. (2011). Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. Applied and Environmental Microbiology, 77(23), 8249–8258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng, J., Gu, Y., Quan, Y., Cao, M., Gao, W., Wei, Z., et al. (2015). Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens, by modular pathway engineering. Metabolic Engineering, 32, 106–115.

    Article  CAS  PubMed  Google Scholar 

  39. Ohsawa, T., Tsukahara, K., & Ogura, M. (2009). Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Bioscience, Biotechnology, and Biochemistry, 73(9), 2096–2102.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the National Key Research and Development Program of China (2017YFB0309302), the National High Technology Research and Development Program of China (863 Program) (No. SS2014AA021202), and “Shu Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (15SG28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Fan or Liming Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Fan, L., Zhao, M. et al. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion. Appl Biochem Biotechnol 189, 411–423 (2019). https://doi.org/10.1007/s12010-019-03004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03004-2

Keywords

Navigation