Advertisement

In Vitro Thermal and Ethanol Adaptations to Improve Vinegar Fermentation at High Temperature of Komagataeibacter oboediens MSKU 3

  • Pornchanok Taweecheep
  • Kallayanee Naloka
  • Minenosuke Matsutani
  • Toshiharu Yakushi
  • Kazunobu Matsushita
  • Gunjana TheeragoolEmail author
Article
  • 58 Downloads

Abstract

High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.

Keywords

Komagataeibacter oboediens Vinegar fermentation In vitro Thermal adaptation Ethanol adaptation Mutated gene Next-generation sequencing (NGS) technology 

Notes

Acknowledgements

This work was financially supported by the Golden Jubilee PhD Program (grant no. PHD/ 0242/ 2553), Department of Microbiology and the Graduate School, Kasetsart University. A part of this work was carried out through collaboration with the Core to Core Program supported by the Japan Society for the Promotion of Science (JSPS), the National Research Council of Thailand (NRCT), Vietnam Ministry of Science and Technology, National University of Laos, University of Brawijaya, Beuth University of Applied Sciences, and The University of Manchester, and also supported financially by the Advanced Low Carbon Technology Research and Development Program (ALCA: JPMJAL1106) of Japan Science and Technology Agency (JST). We would like to express our sincere thanks to Assistant Professor Dr. Naoya Kataoka, Yamaguchi University, for useful suggestions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3003_MOESM1_ESM.docx (257 kb)
Fig S1 Time course of growth and acetic acid production of K. oboediens MSKU 3 (●) and K. europaeus DSM 6160T (○) grown in 100 ml of YPGD1A2E by fed batch fermentation. The cultures were incubated at 30 °C with a rotary shaking speed of 200 rev min−1 for 14 days. The arrows indicate the new fermentation cycle started by adding 2% (v/v) ethanol, when the ethanol content is between 0.5–1.0%. Black and white arrows indicate the ethanol adding points for K. oboediens MSKU 3 and K. europaeus DSM 6160T, respectively. (DOCX 256 kb)
12010_2019_3003_MOESM2_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
12010_2019_3003_MOESM3_ESM.docx (19 kb)
ESM 2 (DOCX 18 kb)
12010_2019_3003_MOESM4_ESM.docx (21 kb)
ESM 3 (DOCX 20 kb)

References

  1. 1.
    Gullo, M., Verzelloni, E., & Canonico, M. (2014). Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochemistry, 49(10), 1571–1579.CrossRefGoogle Scholar
  2. 2.
    Yoshino, T., Asakura, T., & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicone membrane. Journal of Fermentation and Bioengineering, 81(1), 32–36.CrossRefGoogle Scholar
  3. 3.
    Brown, R. M. (2004). Cellulose structure and biosynthesis: what is in store for the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 487–495.CrossRefGoogle Scholar
  4. 4.
    Sievers, M., Sellmer, S., & Teuber, M. (1992). Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in Central Europe. Systematic and Applied Microbiology, 15(3), 386–392.CrossRefGoogle Scholar
  5. 5.
    Boesch, C., Trček, J., Sievers, M., & Teuber, M. (1998). Acetobacter intermedius, sp. nov. Systematic and Applied Microbiology, 21(2), 220–229.CrossRefGoogle Scholar
  6. 6.
    Sokollek, S. J., Hertel, C., & Hammes, W. P. (1998). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. International Journal of Systematic Bacteriology, 48(3), 935–940.CrossRefGoogle Scholar
  7. 7.
    Schüller, G., Hertel, C., & Hammes, W. P. (2000). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. International Journal of Systematic and Evolutionary Microbiology, 50(6), 2013–2020.CrossRefGoogle Scholar
  8. 8.
    Slapšak, N., Cleenwerck, I., de Vos, P., & Trček, J. (2013). Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Systematic and Applied Microbiology, 36(1), 17–21.CrossRefGoogle Scholar
  9. 9.
    Fernández-Pérez, R., Torres, C., Sanz, S., & Ruiz-Larrea, F. (2010). Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiology, 27(8), 973–978.CrossRefGoogle Scholar
  10. 10.
    Vegas, C., González, Á., Mateo, E., Mas, A., Poblet, M., & Torija, M. J. (2013). Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Research International, 51(1), 404–411.CrossRefGoogle Scholar
  11. 11.
    Lu, S. F., Lee, F. L., & Chen, H. K. (1999). A thermotolerant and high acetic acid-producing bacterium Acetobacter sp. I14–2. Journal of Applied Microbiology, 86(1), 55–62.CrossRefGoogle Scholar
  12. 12.
    de Ory, I., Romero, L. E., & Cantero, D. (1998). Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: influence of the temperature of operation. Applied Microbiology and Biotechnology, 49(2), 189–193.CrossRefGoogle Scholar
  13. 13.
    Russell, A. D. (2003). Lethal effects of heat on bacterial physiology and structure. Science Progress, 86(1/2), 115–137.CrossRefGoogle Scholar
  14. 14.
    Azuma, Y., Hosoyama, A., Matsutani, M., Furuya, N., Horikawa, H., Harada, T., Hirakawa, H., Kuhara, S., Matsushita, K., Fujita, N., & Shirai, M. (2009). Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Research, 37(17), 5768–5783.CrossRefGoogle Scholar
  15. 15.
    Matsutani, M., Nishikura, M., Saichana, N., Hatano, T., Masud-Tippayasak, U., Theergool, G., Yakushi, T., & Matsushita, K. (2013). Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. Journal of Biotechnology, 165(2), 109–119.CrossRefGoogle Scholar
  16. 16.
    Krisch, J., & Szajani, B. (1997). Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnology Letters, 19(6), 525–528.CrossRefGoogle Scholar
  17. 17.
    Yuan, Y., Feng, F., Chen, L., Yao, Q., & Chen, K. (2013). Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar. European Food Research and Technology, 236(3), 573–578.CrossRefGoogle Scholar
  18. 18.
    Wei, K., Cao, X., Li, X., Wang, C., & Hou, L. (2012). Genome shuffling to improve fermentation properties of acetic acid bacterium by the improvement of ethanol tolerance. International Journal of Food Science & Technology, 47(10), 2184–2189.CrossRefGoogle Scholar
  19. 19.
    Zheng, Y., Zhang, K., Su, G., Han, Q., Shen, Y., & Wang, M. (2015). The evolutionary response of alcohol dehydrogenase and aldehyde dehydrogenases of Acetobacter pasteurianus CGMCC 3089 to ethanol adaptation. Food Science and Biotechnology, 24(1), 133–140.CrossRefGoogle Scholar
  20. 20.
    Ishikawa, M., Okamoto-Kainuma, A., Matsui, K., Takigishi, A., Kaga, T., & Koizumi, Y. (2010). Cloning and characterization of clpB in Acetobacter pasteurianus NBRC 3283. Journal of Bioscience and Bioengineering, 110(1), 69–71.CrossRefGoogle Scholar
  21. 21.
    Andrés-Barrao, C., Saad, M. M., Chappuis, M. L., Boffa, M., Perret, X., Ortega Perez, R., & Barja, F. (2012). Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. Journal of Proteomics, 75(6), 1701–1717.CrossRefGoogle Scholar
  22. 22.
    Theeragool, G., Pitiwittayakul, N., Matsutani, M., & Matsushita, K. (2018). Disruption of the groEL gene revealed a physiological role for chaperonin in the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108. Chiang Mai Journal of Science, 45(4), 1623–1633.Google Scholar
  23. 23.
    Matsushita, K., Azuma, Y., Kosaka, T., Yakushi, T., Hoshida, H., Akada, R., & Yamada, M. (2016). Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Bioscience Biotechnology and Biochemistry, 80(4), 655–668.CrossRefGoogle Scholar
  24. 24.
    Matsutani, M., Ito, K., Azuma, Y., Ogino, H., Shirai, M., Yakushi, T., & Matsushita, K. (2015). Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Applied Microbiology and Biotechnology, 99(17), 7229–7240.CrossRefGoogle Scholar
  25. 25.
    Naloka, K., Yukphan, P., Matsushita, K., & Theeragool, G. (2018). Molecular taxonomy and characterization of thermotolerant Komagataeibacter species for bacterial nanocellulose production at high temperatures. Chiang Mai Journal of Science, 45(4), 1610–1622.Google Scholar
  26. 26.
    Trcek, J. (2005). Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Systematic and Applied Microbiology, 28(8), 735–745.CrossRefGoogle Scholar
  27. 27.
    Okumura, H., Uozumi, T., & Beppu, T. (1985). Construction of plasmid vectors and a genetic transformation system for Acetobacter aceti. Agricultural and Biological Chemistry, 49(4), 1011–1017.Google Scholar
  28. 28.
    Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477.CrossRefGoogle Scholar
  29. 29.
    Matsutani, M., Hirakawa, H., Hiraoka, E., Theeragool, G., Yakushi, T., & Matsushita, K. (2016). Complete genome sequencing and comparative genomic analysis of the thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, provide a new insight into thermotolerance. Microbes and Environments, 31(4), 395–400.CrossRefGoogle Scholar
  30. 30.
    Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.CrossRefGoogle Scholar
  31. 31.
    Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589–595.CrossRefGoogle Scholar
  32. 32.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303.CrossRefGoogle Scholar
  33. 33.
    DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43, 491.CrossRefGoogle Scholar
  34. 34.
    Matsushita, K., Ohnishi, T., & Kaback, H. R. (1987). NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry, 26(24), 7732–7737.CrossRefGoogle Scholar
  35. 35.
    Mogi, T., Ano, Y., Nakatsuka, T., Toyama, H., Muroi, A., Miyoshi, H., Migita, C. T., Ui, H., Shiomi, K., Ōmura, S., Kita, K., & Matsushita, K. (2009). Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. The Journal of Biochemistry, 146(2), 263–271.CrossRefGoogle Scholar
  36. 36.
    Miura, H., Mogi, T., Ano, Y., Migita, C. T., Matsutani, M., Yakushi, T., Kita, K., & Matsushita, K. (2013). Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. The Journal of Biochemistry, 153(6), 535–545.CrossRefGoogle Scholar
  37. 37.
    Richhardt, J., Luchterhand, B., Bringer, S., Büchs, J., & Bott, M. (2013). Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. Journal of Bacteriology, 195(18), 4210–4220.CrossRefGoogle Scholar
  38. 38.
    Umeda, Y., Hirano, A., Ishibashi, M., Akiyama, H., Onizuka, T., Ikeuchi, M., & Inoue, Y. (1999). Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: Implication of a novel set of cellulose synthase genes. DNA Research, 6(2), 109–115.CrossRefGoogle Scholar
  39. 39.
    Hattori, H., Yakushi, T., Matsutani, M., Moonmangmee, D., Toyama, H., Adachi, O., & Matsushita, K. (2012). High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Applied Microbiology and Biotechnology, 95(6), 1531–1540.CrossRefGoogle Scholar
  40. 40.
    García, A., Segura, D., Espín, G., Galindo, E., Castillo, T., & Peña, C. (2014). High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochemical Engineering Journal, 82, 117–123.CrossRefGoogle Scholar
  41. 41.
    Lee, S., Jang, J. K., & Park, Y. S. (2016). Fed-batch fermentation of onion vinegar using Acetobacter tropicalis. Food Science and Biotechnology, 25(5), 1407–1411.CrossRefGoogle Scholar
  42. 42.
    Okamoto-Kainuma, A., Ishikawa, M., Nakamura, H., Fukazawa, S., Tanaka, N., Yamagami, K., & Koizumi, Y. (2011). Characterization of rpoH in Acetobacter pasteurianus NBRC3283. Journal of Bioscience and Bioengineering, 111(4), 429–432.CrossRefGoogle Scholar
  43. 43.
    Paget, M. S., & Helmann, J. D. (2003). The sigma70 family of sigma factors. Genome Biology, 4(1), 203–203.CrossRefGoogle Scholar
  44. 44.
    Thomas, T., & Thomas, T. J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences CMLS, 58(2), 244–258.CrossRefGoogle Scholar
  45. 45.
    Hussain, S. S., Ali, M., Ahmad, M., & Siddique, K. H. M. (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29(3), 300–311.CrossRefGoogle Scholar
  46. 46.
    Schulz, A., & Schumann, W. (1996). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. Journal of Bacteriology, 178(4), 1088–1093.CrossRefGoogle Scholar
  47. 47.
    Soemphol, W., Deeraksa, A., Matsutani, M., Yakushi, T., Toyama, H., Adachi, O., Yamada, M., & Matsushita, K. (2011). Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Bioscience Biotechnology and Biochemistry, 75(10), 1921–1928.CrossRefGoogle Scholar
  48. 48.
    Correa Deza, M. A., Grillo-Puertas, M., Salva, S., Rapisarda, V. A., Gerez, C. L., & Font de Valdez, G. (2017). Inorganic salts and intracellular polyphosphate inclusions play a role in the thermotolerance of the immunobiotic Lactobacillus rhamnosus CRL 1505. PLoS One, 12(6), e0179242.CrossRefGoogle Scholar
  49. 49.
    Hanna, M. N., Ferguson, R. J., Li, Y.-H., & Cvitkovitch, D. G. (2001). uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. Journal of Bacteriology, 183(20), 5964–5973.CrossRefGoogle Scholar
  50. 50.
    Zheng, Y., Wang, J., Bai, X., Chang, Y., Mou, J., Song, J., & Wang, M. (2018). Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Applied Microbiology and Biotechnology, 102(15), 6493–6502.CrossRefGoogle Scholar
  51. 51.
    Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M., & Shapiro, L. (2000). Global analysis of the genetic network controlling a bacterial cell cycle. Science, 290(5499), 2144–2148.CrossRefGoogle Scholar
  52. 52.
    Wortinger, M., Sackett, M. J., & Brun, Y. V. (2000). CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. The EMBO Journal, 19(17), 4503–4512.CrossRefGoogle Scholar
  53. 53.
    Aseev, L. V., Koledinskaya, L. S., & Boni, I. V. (2016). Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. Journal of Bacteriology, 198(18), 2494–2502.CrossRefGoogle Scholar
  54. 54.
    Ogino, H., Azuma, Y., Hosoyama, A., Nakazawa, H., Matsutani, M., Hasegawa, A., Otsuyama, K.-i., Matsushita, K., Fujita, N., & Shirai, M. (2011). Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. Journal of Bacteriology, 193(24), 6997–6998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Graduate Program in Genetic Engineering, The Graduate SchoolKasetsart UniversityBangkokThailand
  2. 2.Department of Microbiology, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchiJapan
  4. 4.Department of Biological Chemistry, Faculty of AgricultureYamaguchi UniversityYamaguchiJapan
  5. 5.Research Center for Thermotolerant Microbial ResourcesYamaguchi UniversityYamaguchiJapan

Personalised recommendations