Advertisement

Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces cerevisiae

  • Jeong-won Kim
  • Jeong Hwa Jang
  • Hyeon Jin Yeo
  • Jeongman Seol
  • Soo Rin Kim
  • Young Hoon JungEmail author
Article
  • 42 Downloads

Abstract

Spent coffee grounds (SCG) generated after coffee extraction are the main byproduct of the coffee industry. Valorization of the SCG has been increasingly focused following considerable attention in coffee consumption. Lactic acid bacteria fermentation is the primary source of generation of lactic acid, a monomer of polylactic acid that has various industrial applications; however, because of the low tolerance of lactic acid bacteria to toxic compounds, it is necessary to apply Saccharomyces cerevisiae to produce lactic acid whose tolerance to toxic compounds is higher. In this study, we evaluated the feasibility of using SCG as substrate for the production of lactic acid by S. cerevisiae strain expressing heterologous lactate dehydrogenase. The fermentation profiles of the engineered yeast showed that lactic acid production was promoted by xylose addition. From simultaneous saccharification and fermentation (SSF) using a whole slurry of acid-pretreated SCG, containing high amounts of hemicellulose fractions, lactic acid (0.11 g) and ethanol (0.10 g) per g SCG were obtained after 24 h of SSF, of which yields were 413% and 221% higher, respectively, than those of washed pretreated SCG. Thus, fermentation of whole slurry SCG by engineered S. cerevisiae is a suitable way of lactic acid production, selectively.

Keywords

Biorefinery Spent coffee grounds Pretreatment Lactic acid Saccharomyces cerevisiae Metabolic engineering 

Notes

Funding information

This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Education (Grant No. 03030504).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Obruca, S., Benesova, P., Kucera, D., Petrik, S., & Marova, I. (2015). Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnology, 32(6), 569–574.CrossRefGoogle Scholar
  2. 2.
    Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 45(1), 24–36.CrossRefGoogle Scholar
  3. 3.
    Burniol-Figols, A., Cenian, K., Skiadas, I. V., & Gavala, H. N. (2016). Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochemical Engineering Journal, 116, 54–64.CrossRefGoogle Scholar
  4. 4.
    Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661–672.CrossRefGoogle Scholar
  5. 5.
    Kwon, E. E., Yi, H., & Jeon, Y. J. (2013). Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresource Technology, 136, 475–480.CrossRefGoogle Scholar
  6. 6.
    Mussatto, S. I., Machado, E. M. S., Carneiro, L. M., & Teixeira, J. A. (2012). Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763–768.CrossRefGoogle Scholar
  7. 7.
    Caetano, N. S., Silva, V. F. M., Melo, A. C., Martins, A. A., & Mata, T. M. (2014). Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy, 16(7), 1423–1430.CrossRefGoogle Scholar
  8. 8.
    Hudeckova, H., Neureiter, M., Obruca, S., Frühauf, S., & Marova, I. (2018). Biotechnological conversion of spent coffee grounds into lactic acid. Letters in Applied Microbiology, 66(4), 306–312.CrossRefGoogle Scholar
  9. 9.
    Choi, I. S., Wi, S. G., Kim, S. B., & Bae, H. J. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology, 125, 132–137.CrossRefGoogle Scholar
  10. 10.
    Go, Y. W., & Yeom, S. H. (2017). Statistical analysis and optimization of biodiesel production from waste coffee grounds by a two-step process. Biotechnology and Bioprocess Engineering, 22(4), 440–449.CrossRefGoogle Scholar
  11. 11.
    Lee, J. W., In, J. H., Park, J. B., Shin, J., Park, J. H., Sung, B. H., Sohn, J. H., Seo, J. H., Kim, S. R., & Kweon, D. H. (2017). Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Journal of Biotechnology, 241, 81–86.CrossRefGoogle Scholar
  12. 12.
    Upadhyaya, B. P., DeVeaux, L. C., & Christopher, L. P. (2014). Metabolic engineering as a tool for enhanced lactic acid production. Trends in Biotechnology, 32(12), 637–644.CrossRefGoogle Scholar
  13. 13.
    Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: Expanding the markets. Trends in Biotechnology, 26(2), 100–108.CrossRefGoogle Scholar
  14. 14.
    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877–902.CrossRefGoogle Scholar
  15. 15.
    Trinh, L. T. P., Lee, Y.-J., Lee, J.-W., & Lee, W.-H. (2018). Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate. Biotechnology and Bioprocess Engineering, 23(2), 228–237.CrossRefGoogle Scholar
  16. 16.
    Jung, Y. H., Park, H. M., Kim, I. J., Park, Y.-C., Seo, J.-H., & Kim, K. H. (2014). One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Advances, 4(98), 55318–55327.CrossRefGoogle Scholar
  17. 17.
    Tarraran, L., & Mazzoli, R. (2018). Alternative strategies for lignocellulose fermentation through lactic acid bacteria: The state of the art and perspectives. FEMS Microbiology Letters, 365, fny126.CrossRefGoogle Scholar
  18. 18.
    Breton Toral, A., Trejo Estrada, S. R., & McDonald, A. G. (2016). Lactic acid production from potato peel waste, spent coffee grounds and almond shells with undefined mixed cultures isolated from coffee mucilage from Coatepec Mexico. Fermentation Technology, 6, 1–6.CrossRefGoogle Scholar
  19. 19.
    Pleissner, D., Neu, A.-K., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167–173.CrossRefGoogle Scholar
  20. 20.
    Ishida, N., Suzuki, T., Tokuhiro, K., Nagamori, E., Onishi, T., Saitoh, S., Kitamoto, K., & Takahashi, H. (2016). D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 101, 172–177.CrossRefGoogle Scholar
  21. 21.
    Ishida, N., Saitoh, S., Tokuhiro, K., Nagamori, E., Matsuyama, T., Kitamoto, K., & Takahashi, H. (2005). Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Applied and Environmental Microbiology, 71(4), 1964–1970.CrossRefGoogle Scholar
  22. 22.
    Turner, T. L., Zhang, G. C., Kim, S. R., Subramaniam, V., Steffen, D., Skory, C. D., Jang, J. Y., Yu, B. J., & Jin, Y. S. (2015). Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Applied Microbiology and Biotechnology, 99(19), 8023–8033.CrossRefGoogle Scholar
  23. 23.
    Kim, S. R., Skerker, J. M., Kang, W., Lesmana, A., Wei, N., Arkin, A. P., & Jin, Y.-S. (2013). Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One, 8(2), e57048.CrossRefGoogle Scholar
  24. 24.
    Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., & Kim, K. H. (2016). PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 34, 88–96.CrossRefGoogle Scholar
  25. 25.
    Novy, V., Brunner, B., & Nidetzky, B. (2018). L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: Aeration and carbon source influence yields and productivities. Microbial Cell Factories, 17(1), 59.CrossRefGoogle Scholar
  26. 26.
    Ha, S.-J., Galazka, J. M., Kim, S. R., Choi, J.-H., Yang, X., Seo, J.-H., Glass, N. L., Cate, J. H., & Jin, Y.-S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 504–509.CrossRefGoogle Scholar
  27. 27.
    Taxis, C., & Knop, M. (2006). System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. BioTechniques, 40(1), 73–78.CrossRefGoogle Scholar
  28. 28.
    Baek, S. H., Kwon, E. Y., Kim, Y. H., & Hahn, J. S. (2016). Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 100(6), 2737–2748.CrossRefGoogle Scholar
  29. 29.
    Song, J. Y., Park, J. S., Kang, C. D., Cho, H. Y., Yang, D., Lee, S., & Cho, K. M. (2016). Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 35, 38–45.CrossRefGoogle Scholar
  30. 30.
    Turner, T. L., Zhang, G. C., Oh, E. J., Subramaniam, V., Adiputra, A., Subramaniam, V., Skory, C. D., Jang, J. Y., Yu, B. J., Park, I., & Jin, Y. S. (2016). Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113(5), 1075–1083.CrossRefGoogle Scholar
  31. 31.
    Yamada, R., Wakita, K., Mitsui, R., & Ogino, H. (2017). Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnology and Bioengineering, 114(9), 2075–2084.CrossRefGoogle Scholar
  32. 32.
    Baek, S. H., Kwon, E. Y., Bae, S. J., Cho, B. R., Kim, S. Y., & Hahn, J. S. (2017). Improvement of d-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnology Journal, 12(10), 1700015.CrossRefGoogle Scholar
  33. 33.
    Jung, Y. H., Kim, I. J., Kim, H. K., & Kim, K. H. (2013). Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology, 132, 109–114.CrossRefGoogle Scholar
  34. 34.
    Jang, J. H., Yeo, H. J., J-w, K., Kim, S. R., & Jung, Y. H. (2018). Glucose production from spent coffee grounds by acid pretreatment and enzymatic hydrolysis. Korean Society for Biotechnology and Bioengineering Journal, 33, 247–252.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science and BiotechnologyKyungpook National UniversityDaeguSouth Korea

Personalised recommendations