Advertisement

Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7

  • Umji Choi
  • Subin Jung
  • Soon-Kwang Hong
  • Chang-Ro LeeEmail author
Article
  • 24 Downloads

Abstract

Gayadomonas joobiniege G7 is an agar-degrading bacterium, which produces various agarases that have been biochemically characterized recently. In this study, we biochemically characterized a new β-agarase AgaJ10 belonging to the glycoside hydrolase (GH) 42 family from G. joobiniege G7. AgaJ10 is composed of 762 amino acids (89 kDa) and has the highest similarity (63% identity) to a putative β-agarase from the agar-degrading bacterium Catenovulum sp. DS-2, which was obtained from the intestines of a Haliotis diversicolor. The optimal pH and temperature for AgaJ10 activity were determined to be 5.0 and 30 °C, respectively. AgaJ10 exhibited a cold tolerance, retaining more than 40% of its enzymatic activity at 5 °C. The Km and Vmax of AgaJ10 for agarose were 61.5 mg/mL and 294.1 U/mg, respectively. Notably, the activity of AgaJ10 was significantly enhanced by Mn2+ but was strongly inhibited by some metal ions, including Fe2+, Ni2+, and Cu2+. Agarose-liquefaction, mass spectrometry, and thin-layer chromatography analyses showed that AgaJ10 is an exo-type β-agarase that hydrolyzes agarose only into neoagarobiose. Therefore, this study is the first report of a GH42 β-agarase that catalyzes a neoagarobiose-producing exo-type reaction.

Keywords

Agar β-agarase GH42 Gayadomonas joobiniege 

Notes

Funding information

This work was supported by the 2016 Research Fund of Myongji University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Duckworth, M., & Yaphe, W. (1972). The relationship between structures and biological properties of agars. In K. Nisizawa (Ed.), Proceedings of the 7th International Seaweed Symposium (pp. 15–22). New York: Halstead Press.Google Scholar
  2. 2.
    Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology, 94(4), 917–930.  https://doi.org/10.1007/s00253-012-4023-2.CrossRefGoogle Scholar
  3. 3.
    Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S., & Horikoshi, K. (2005). Purification and characterization of a novel α-agarase from a Thalassomonas sp. Current Microbiology, 50(4), 212–216.  https://doi.org/10.1007/s00284-004-4435-z.CrossRefGoogle Scholar
  4. 4.
    Potin, P., Richard, C., Rochas, C., & Kloareg, B. (1993). Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. European Journal of Biochemistry, 214(2), 599–607.  https://doi.org/10.1111/j.1432-1033.1993.tb17959.x.CrossRefGoogle Scholar
  5. 5.
    Zhang, W., Xu, J., Liu, D., Liu, H., Lu, X., & Yu, W. (2018). Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Applied Microbiology and Biotechnology, 102(5), 2203–2212.  https://doi.org/10.1007/s00253-018-8762-6.CrossRefGoogle Scholar
  6. 6.
    Chen, X. L., Hou, Y. P., Jin, M., Zeng, R. Y., & Lin, H. T. (2016). Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga Sp. OC4. Journal of Agricultural and Food Chemistry, 64(38), 7251–7258.  https://doi.org/10.1021/acs.jafc.6b02998.CrossRefGoogle Scholar
  7. 7.
    Li, J., Hu, Q., Li, Y., & Xu, Y. (2015). Purification and characterization of cold-adapted β-agarase from an Antarctic psychrophilic strain. Brazilian Journal of Microbiology, 46(3), 683–690.  https://doi.org/10.1590/S1517-838246320131289.CrossRefGoogle Scholar
  8. 8.
    Li, J., Sha, Y., Seswita-Zilda, D., Hu, Q., & He, P. (2014). Purification and characterization of thermostable agarase from Bacillus sp. BI-3, a thermophilic bacterium isolated from hot spring. Journal of Microbiology and Biotechnology, 24(1), 19–25.  https://doi.org/10.4014/jmb.1308.08055.CrossRefGoogle Scholar
  9. 9.
    Asghar, S., Lee, C. R., Park, J. S., Chi, W. J., Kang, D. K., & Hong, S. K. (2018). Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 102(20), 8855–8866.  https://doi.org/10.1007/s00253-018-9277-x.CrossRefGoogle Scholar
  10. 10.
    Ha, S. C., Lee, S., Lee, J., Kim, H. T., Ko, H. J., Kim, K. H., & Choi, I. G. (2011). Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochemical and Biophysical Research Communications, 412(2), 238–244.  https://doi.org/10.1016/j.bbrc.2011.07.073.CrossRefGoogle Scholar
  11. 11.
    Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. The FASEB Journal, 10(4), 461–470.  https://doi.org/10.1096/fasebj.10.4.8647345.CrossRefGoogle Scholar
  12. 12.
    Yun, E. J., Lee, S., Kim, H. T., Pelton, J. G., Kim, S., Ko, H. J., Choi, I. G., & Kim, K. H. (2015). The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology, 17(5), 1677–1688.  https://doi.org/10.1111/1462-2920.12607.CrossRefGoogle Scholar
  13. 13.
    Jung, S., Jeong, B. C., Hong, S. K., & Lee, C. R. (2017). Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Applied Biochemistry and Biotechnology, 181(3), 961–971.  https://doi.org/10.1007/s12010-016-2262-x.CrossRefGoogle Scholar
  14. 14.
    Jung, S., Lee, C. R., Chi, W. J., Bae, C. H., & Hong, S. K. (2017). Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 101(5), 1965–1974.  https://doi.org/10.1007/s00253-016-7951-4.CrossRefGoogle Scholar
  15. 15.
    Lee, Y. R., Jung, S., Chi, W. J., Bae, C. H., Jeong, B. C., Hong, S. K., & Lee, C. R. (2018). Biochemical characterization of a novel GH86 β-agarase producing neoagarohexaose from Gayadomonas joobiniege G7. Journal of Microbiology and Biotechnology, 28(2), 284–292.  https://doi.org/10.4014/jmb.1710.10011.CrossRefGoogle Scholar
  16. 16.
    Zor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 236(2), 302–308.  https://doi.org/10.1006/abio.1996.0171.CrossRefGoogle Scholar
  17. 17.
    da Park, Y., Chi, W. J., Park, J. S., Chang, Y. K., & Hong, S. K. (2015). Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7. Applied Biochemistry and Biotechnology, 175(2), 733–747.  https://doi.org/10.1007/s12010-014-1294-3.CrossRefGoogle Scholar
  18. 18.
    Segel, I. H. (1976). Enzyme kinetics. In Biochemical calculations. How to solve mathematical problems in general biochemistry (2nd ed., pp. 214–229). New York: Wiley.Google Scholar
  19. 19.
    Shan, D., Li, X., Gu, Z., Wei, G., Gao, Z., & Shao, Z. (2014). Draft genome sequence of the agar-degrading bacterium Catenovulum sp. strain DS-2, isolated from intestines of Haliotis diversicolor. Genome Announcements, 2, e00144–e00114.  https://doi.org/10.1128/genomeA.00145-14.Google Scholar
  20. 20.
    Qin, Q. L., Xie, B. B., Yu, Y., Shu, Y. L., Rong, J. C., Zhang, Y. J., Zhao, D. L., Chen, X. L., Zhang, X. Y., Chen, B., Zhou, B. C., & Zhang, Y. Z. (2014). Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environmental Microbiology, 16(6), 1642–1653.  https://doi.org/10.1111/1462-2920.12318.CrossRefGoogle Scholar
  21. 21.
    Han, W., Cheng, Y., Wang, D., Wang, S., Liu, H., Gu, J., Wu, Z., & Li, F. (2016). Biochemical characteristics and substrate degradation pattern of a novel exo-type β-agarase from the polysaccharide-degrading marine bacterium Flammeovirga sp. strain MY04. Applied and Environmental Microbiology, 82(16), 4944–4954.  https://doi.org/10.1128/AEM.00393-16.CrossRefGoogle Scholar
  22. 22.
    Kim, H. T., Lee, S., Lee, D., Kim, H. S., Bang, W. G., Kim, K. H., & Choi, I. G. (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Applied Microbiology and Biotechnology, 86(1), 227–234.  https://doi.org/10.1007/s00253-009-2256-5.CrossRefGoogle Scholar
  23. 23.
    Liang, S. S., Chen, Y. P., Chen, Y. H., Chiu, S. H., & Liaw, L. L. (2014). Characterization and overexpression of a novel β-agarase from Thalassomonas agarivorans. Journal of Applied Microbiology, 116(3), 563–572.  https://doi.org/10.1111/jam.12389.CrossRefGoogle Scholar
  24. 24.
    Liu, N., Mao, X., Yang, M., Mu, B., & Wei, D. (2014). Gene cloning, expression and characterisation of a new β-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801. World Journal of Microbiology and Biotechnology, 30(6), 1691–1698.  https://doi.org/10.1007/s11274-013-1591-y.CrossRefGoogle Scholar
  25. 25.
    Temuujin, U., Chi, W. J., Chang, Y. K., & Hong, S. K. (2012). Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3 (2), an exo- and endo-type β-agarase-producing neoagarobiose. Journal of Bacteriology, 194(1), 142–149.CrossRefGoogle Scholar
  26. 26.
    Hafizah, N. F., Teh, A. H., & Furusawa, G. (2018). Biochemical characterization of thermostable and detergent-tolerant β-agarase, PdAgaC, from Persicobacter sp. CCB-QB2. Applied Biochemistry and Biotechnology, doi:  https://doi.org/10.1007/s12010-12018-12849-12015.
  27. 27.
    Liang, Y., Ma, X., Zhang, L., Li, F., Liu, Z., & Mao, X. (2017). Biochemical characterization and substrate degradation mode of a novel exotype β-agarase from Agarivorans gilvus WH0801. Journal of Agricultural and Food Chemistry, 65(36), 7982–7988.  https://doi.org/10.1021/acs.jafc.7b01533.CrossRefGoogle Scholar
  28. 28.
    Fu, X. T., & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs, 8(1), 200–218.  https://doi.org/10.3390/md8010200.CrossRefGoogle Scholar
  29. 29.
    Hong, S. J., Lee, J. H., Kim, E. J., Yang, H. J., Park, J. S., & Hong, S. K. (2017). Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Marine Drugs, 15(4), E90.  https://doi.org/10.3390/md15040090.CrossRefGoogle Scholar
  30. 30.
    Kobayashi, R., Takisada, M., Suzuki, T., Kirimura, K., & Usami, S. (1997). Neoagarobiose as a novel moisturizer with whitening effect. Bioscience, Biotechnology, and Biochemistry, 61(1), 162–163.CrossRefGoogle Scholar
  31. 31.
    Yun, E. J., Yu, S., & Kim, K. H. (2017). Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Applied Microbiology and Biotechnology, 101(14), 5581–5589.  https://doi.org/10.1007/s00253-017-8383-5.CrossRefGoogle Scholar
  32. 32.
    Zhang, P., Zhang, J., Zhang, L., Sun, J., Li, Y., Wu, L., Zhou, J., Xue, C., & Mao, X. (2018). Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability. Applied Microbiology and Biotechnology., 103(3), 1289–1298.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesMyongji UniversityYonginRepublic of Korea

Personalised recommendations