Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum

  • Beatriz Vieira dos Santos
  • Patrísia Oliveira Rodrigues
  • Carlos Juliano Brant Albuquerque
  • Daniel Pasquini
  • Milla Alves BaffiEmail author


This study evaluated the production of lignocellulose-degrading enzymes by solid-state fermentation (SSF) using a microbial consortium of Aspergillus fumigatus SCBM6 and A. niger SCBM1 (AFN extract). The fungal strains were cultivated in sugarcane bagasse (SCB) and wheat bran (WB) as lignocellulosic substrates for 7 days at 30 °C. After SSF, the highest peaks of enzyme production were 150 and 80 U g−1 for β-xylosidase and β-glucosidase at 48 h, 375 U g−1 for xylanase at 96 h, and 80 U g−1 for endoglucanase and 4 U g−1 for cellulase activity on filter paper (FPase) at 144 h. The efficiency of the produced AFN extract was investigated in the enzymatic hydrolysis of crude biomass sorghum (BS) and after the removal of extractives (ES). After saccharification, the glucose and xylose concentrations were 10× superior in ES than in BS hydrolysate (2.5 g L−1 after 12 h). The presence of inhibitors of alcoholic fermentation, such as formic acid, was also reduced in ES hydrolysates, indicating that the removal of extractives positively contributed to the effectiveness of enzymatic hydrolysis of biomass sorghum using AFN extract.


Cellulases Hemicellulases Aspergillus Biomass sorghum Enzymatic hydrolysis 



The authors thank to Dr. Bruno Eduardo Lobo Baeta for the assistance in chemical characterization of sorghum biomass.

Funding Information

This study received financial support from Minas Gerais State Foundation for Research Development-FAPEMIG (PRONEM-FAPEMIG-APQ-01360-14).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Karagöz, P., Rocha, I. V., Özkan, M., & Angelidaki, I. (2012). Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel Saccharification and co-fermentation. Bioresource Technology, 104, 349–357.CrossRefGoogle Scholar
  2. 2.
    Saladini, F., Patrizi, N., Pulselli, F. M., & Marchettini, N. (2016). Guidelines for emergy evaluation of fi rst , second and third generation biofuels. Renewable and Sustainable Energy Reviews, 66, 221–227.CrossRefGoogle Scholar
  3. 3.
    Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68–76.CrossRefGoogle Scholar
  4. 4.
    Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Review on bio ethanol as alternative fuel for spark ignition engines. Renewable and Sustainable Energy Reviews, 56, 820–835.CrossRefGoogle Scholar
  5. 5.
    Carrillo, M. A., Staggenborg, S. A., & Pineda, J. A. (2014). Washing sorghum biomass with water to improve its quality for combustion. Fuel., 116, 427–431.CrossRefGoogle Scholar
  6. 6.
    Dahlberg, J. (2019). The role of sorghum in renewables and biofuels. In Humana Press (Ed.), Sorghum Methodos Protoc, 1st edn (pp. 269–277).Google Scholar
  7. 7.
    Parrella, R. A. C. (2011). Desempenho agronômico de híbrido de sorgo biomassa. Sete Lagoas: Embrapa Milho e sorgo. Boletim de Pesquisa e Desenvolvimento. 41, 19p.Google Scholar
  8. 8.
    May, A., Parrela, R. A. C., Damasceno, C. M. B., & Simeone, M. L. F. (2014). Sorgo como matéria-prima para produção de bioenergia: etanol e cogeração. Informe Agropecuário., 35(278), 73–81.Google Scholar
  9. 9.
    Demirbaş, A. (2003). Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Conversion and Management, 44(9), 1481–1486.CrossRefGoogle Scholar
  10. 10.
    Chandel, A. K., Singh, O. V., Narasu, M. L., & Rao, L. V. (2011). Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS3. New Biotechnology, 28(6), 593–599.CrossRefGoogle Scholar
  11. 11.
    Alfenore, S., & Molina-Jouvea, C. (2016). Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochemistry, 51(11), 1747–1756.CrossRefGoogle Scholar
  12. 12.
    Gomes, A. F. S., dos Santos, B. S. L., Franciscon, E. G., & Baffi, M. A. (2016). Substrate and temperature effect on xylanase production by aspergillus fumigatus using low cost agricultural wastes. Bioscience Journal, 915–921.Google Scholar
  13. 13.
    Rodrigues, P. d. O., Pereira, J. d. C., dos Santos, D. Q., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-) cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109, 173–181.CrossRefGoogle Scholar
  14. 14.
    Rocha, G. J. d. M., Nascimento, V. M., Gonçalves, A. R., Silva, V. F. N., & Martín, C. (2015). Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Industrial Crops and Products, 64, 52–58.CrossRefGoogle Scholar
  15. 15.
    Tomás-Pejó, E., Alvira, P., Ballesteros, M., & Negro, M. J. (2011). Pretreatment technologies for lignocellulose-to-bioethanol conversion. Biofuels, 149–176.Google Scholar
  16. 16.
    Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.CrossRefGoogle Scholar
  17. 17.
    Santos, F. A., Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V. M., & Rezende, S. T. (2012). Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova., 35(5), 1004–1010.CrossRefGoogle Scholar
  18. 18.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass: Laboratory analytical Producere (LAP), NREL/TP-510-42618. Golden: National Renewable Energy Laboratory (NREL).Google Scholar
  19. 19.
    Baêta, B. E. L., Lima, D. R. S., Ardame, O. F. H., Gurgel, L. V. A., & de Aquino, S. F. (2016). Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinary concept. Bioresource Technology, 200, 137–146.CrossRefGoogle Scholar
  20. 20.
    Dos Santos, B. S. L., Gomes, A. F. S., Franciscon, E. G., De Oliveira, J. M., & Baffi, M. A. (2015). Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Brazilian Journal of Microbiology, 46(3), 903–910.CrossRefGoogle Scholar
  21. 21.
    Baffi, M. A., Tobal, T., Henrique, J., Lago, G., Leite, R. S. R., Boscolo, M., Gomes, E., & Da-Silva, R. (2011). A novel β-glucosidase from Sporidiobolus pararoseus: Characterization and application in winemaking. Journal of Food Science, 76, 997–1002.CrossRefGoogle Scholar
  22. 22.
    Dias, L. M., dos Santos, B. V., Albuquerque, C. J. B., Baeta, B. E. L., Pasquini, D., & Baffi, M. A. (2017). Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus Niger and A. Fumigatus. Journal of Applied Microbiology, 124, 708–718.CrossRefGoogle Scholar
  23. 23.
    Castro, E., Nieves, I. U., Rondón, V., Sagues, W. J., Fernández-Sandoval, M. T., Yomano, L. P., York, S. W., Erickson, J., & Vermerris, W. (2017). Potential for ethanol production from different sorghum cultivars. Industrial Crops and Products, 109, 367–373.CrossRefGoogle Scholar
  24. 24.
    Koradiya, M., Duggirala, S., Tipre, D., & Dave, S. (2016). Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up. Bioresource Technology, 199, 142–147.CrossRefGoogle Scholar
  25. 25.
    Corredor, D. Y., Salazar, J. M., Hohn, K. L., Bean, S., Bean, B., & Wang, D. (2009). Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Applied Biochemistry and Biotechnology, 158(1), 164–179.CrossRefGoogle Scholar
  26. 26.
    Moretti, M. M. S., Bocchini-Martins, D. A., Da Silva, R., Rodrigues, A., Sette, L. D., & Gomes, E. (2012). Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 43(3), 1062–1071.CrossRefGoogle Scholar
  27. 27.
    Lamounier, K. F. P., Rodrigues, P. O., Pasquini, D., & Baffi, M. A. (2018). Saccharification of sugarcane bagasse using an enzymatic extract produced by Aspergillus fumigatus. Journal of Renewable Materials, 6(2), 169–175.CrossRefGoogle Scholar
  28. 28.
    Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32(7), 1341–1346.CrossRefGoogle Scholar
  29. 29.
    Basso, T. P., Gallo, C. R., & Basso, L. C. (2010). Atividade celulolítica de fungos isolados de bagaço de cana de açúcar e madeira em decomposição. Pesquisa Agropecuária Brasileira, 45(11), 1282–1289.CrossRefGoogle Scholar
  30. 30.
    Oliveira Júnior, S. D., Padilha, C. E. A., De Macedo, G. R., Asevedo, E. A., Carvalho, V. P., & Araujo, F. R. (2018). Utilization of agroindustrial residues for producing celulases by Aspergillus fumigatus on semi-solid fermentation. Journal of Environmental Chemical Engineering, 6(1), 937–944.CrossRefGoogle Scholar
  31. 31.
    Soni, R., Nazir, A., & Chadha, B. S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Industrial Crops and Products, 31(2), 277–283.CrossRefGoogle Scholar
  32. 32.
    Falkoski, D. L., Guimarães, V. M., de Almeida, M. N., Alfenas, A. C., Colodette, J. L., & de Rezende, S. T. (2013). Chrysoporthe cubensis: A new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresource Technology, 130, 296–305.CrossRefGoogle Scholar
  33. 33.
    Ang, S. K., Shaza, E. M., Adibah, Y., Suraini, A. A., & Madihah, M. S. (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochemistry, 48(9), 1293–1303.CrossRefGoogle Scholar
  34. 34.
    Klinke, H. B., Olsson, L., Thomsen, A. B., & Ahring, B. K. (2003). Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast. Biotechnology and Bioengineering, 81(6), 738–747.CrossRefGoogle Scholar
  35. 35.
    Martin, C., Almazan, O., Marcet, M., & Jonsson, L. J. (2007). A study of three strategies for improving the fermentability of sugarcane bagasse hydrolysates for fuel ethanol production. International Sugar Journal, 109, 33–33.Google Scholar
  36. 36.
    Pereira, J. C., Travaini, R., Marques, N. P., Bolado-Rodríguez, S., & Martins, D. A. B. (2016). Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production. Bioresource Technology, 204, 122–129.CrossRefGoogle Scholar
  37. 37.
    Nascimento, V. M., Manrich, A., Tardioli, P. W., de Campos Giordano, R., de Moraes Rocha, G. J., & Giordano, R. d. L. C. (2016). Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides. Bioethanol, 2, 112–125.CrossRefGoogle Scholar
  38. 38.
    Travaini, R., Otero, M. D. M., Coca, M., Da-Silva, R., & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332–339.CrossRefGoogle Scholar
  39. 39.
    Moreira, L. R. S., Milanezi, N. V. G., & Filho, E. X. F. (2011). Enzymology of plant Cell Wall breakdown: An update. In M. S. E. Buckeridge & G. H. Goldman (Eds.), Routes to Cellulosic Ethanol (Vol. 6, pp. 73–96). New York: Springer.CrossRefGoogle Scholar
  40. 40.
    Neves, P. V., Pitarelo, A. P., & Ramos, L. P. (2016). Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresource Technology, 208, 184–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Agricultural Sciences Institute (ICIAG-UFU)Uberlândia Federal UniversityUberlândiaBrazil
  2. 2.Agricultural Sciences Institute (ICA-UFMG)Minas Gerais Federal UniversityMontes ClarosBrazil
  3. 3.Chemical Institute (IQ-UFU)Uberlândia Federal UniversityUberlândiaBrazil

Personalised recommendations