Two-Step Pretreatment of Corn Stover Silage Using Non-ionic Surfactant and Ferric Nitrate for Enhancing Sugar Recovery and Enzymatic Digestibility of Cellulose

  • Youshan SunEmail author
  • Xudong Gong
  • Zhiqiang Wang
  • Chao Huang
  • Xiuqin Ma
  • Meiyan Wang


Corn stover silage (CSS) is regarded as a promising feedstock for bioethanol production. The two-step pretreatment using a sequential non-ionic surfactant and ferric nitrate pretreatment was investigated for improving the enzymatic hydrolysis of CSS. The first-step pretreatment using non-ionic surfactant (Tween-80, 2.0 wt.%) at 60 °C for 60 min achieved 30.48% the removal of lignin. Compared with the raw material, the cellulose content of first-step treated CSS increased by 15.86%. The second step using ferric nitrate resulted in 94.56% hemicellulose removal and achieved 72.53% cellulose purity at 130 °C for 30 min, while the yields of furfural and HMF were only 0.36 and 0.32 g/100 g dry material, respectively. The maximum enzymatic digestibility of the two-step treated CSS was 90.98% with a low cellulose dosage (15 FPU/g-glucan), which was approximately 32.07% higher than that of the first-step pretreatment only with Tween-80.


Tween-80 Ferric nitrate Two-step pretreatment Corn Stover silage Enzymatic hydrolysis 


Funding information

This study was supported by the Natural Science Foundation of Hebei Province (grant Numbers: B2013202113, E2018202333).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interest.


  1. 1.
    Cayetano, R. D. A., & Kim, T. H. (2018). Two-stage processing of Miscanthus giganteus using anhydrous ammonia and hot water for effective xylan recovery and improved enzymatic saccharification. Bioresource Technology, 255, 163–170.CrossRefGoogle Scholar
  2. 2.
    Zhang, Q. Z., Wei, Y., Han, H., & Weng, C. (2018). Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresource Technology, 251, 358–363.CrossRefGoogle Scholar
  3. 3.
    Romaní, A., Tomaz, P. D., Garrote, G., Teixeira, J. A., & Domingues, L. (2016). Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technology, 220, 323–332.CrossRefGoogle Scholar
  4. 4.
    Wan, X., Tian, D., Shen, F., Hu, J. G., Yang, G., Zhang, Y. Z., Deng, S. H., Jing Zhang, J., & Zeng, Y. M. (2018). Fractionating wheat straw via phosphoric acid with hydrogen peroxide pretreatment and structural elucidation of the derived lignin. Energy & Fuels, 32(4), 5218–5225.CrossRefGoogle Scholar
  5. 5.
    Pareek, N., Gillgren, T., & Jonsson, L. J. (2013). Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology, 148, 70–77.CrossRefGoogle Scholar
  6. 6.
    Li, X., & Zheng, Y. (2017). Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35(4), 466–489.CrossRefGoogle Scholar
  7. 7.
    Chen, H. Y., Liu, J. B., Chang, X., Chen, D. M., Xue, Y., Liu, P., Lin, H. L., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196–206.CrossRefGoogle Scholar
  8. 8.
    Choi, C. H., Um, B. H., Kim, Y. S., & Oh, K. K. (2013). Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid. Applied Energy, 102, 640–646.CrossRefGoogle Scholar
  9. 9.
    Kim, J. W., Kim, K. S., Lee, J. S., Park, S. M., Cho, H. Y., Park, J. C., & Kim, J. S. (2011). Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 102(19), 8992–8999.CrossRefGoogle Scholar
  10. 10.
    Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318. Scholar
  11. 11.
    Li, P., Cai, D., Zhang, C. W., Li, S. F., Qin, P. Y., Chen, C. J., Wang, Y., & Wang, Z. (2016). Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresource Technology, 221, 636–644.CrossRefGoogle Scholar
  12. 12.
    Ravindran, R., Jaiswal, S., Abu-Ghannam, N., & Jaiswal, A. K. (2017). Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste. Bioresource Technology, 239, 276–284.CrossRefGoogle Scholar
  13. 13.
    Silva-Dernandes, T., Santos, J. C., Hasmann, F., Rodrigues, R. C. L. B., Filho, I. H. J., & Felipe, M. G. A. (2017). Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresource Technology, 243, 384–392.CrossRefGoogle Scholar
  14. 14.
    Wang, Z. W., Zhu, M. Q., Li, M. F., Wei, Q., & Sun, R. C. (2019). Effects of hydrothermal treatment on enhancing enzymatic hydrolysis of rapeseed straw. Renewable Energy, 134, 446–452.CrossRefGoogle Scholar
  15. 15.
    Batista, G., Souza, R. B. A., Pratto, B., Santos-Rocha, M. S. R., & Cruza, A. J. G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327.CrossRefGoogle Scholar
  16. 16.
    Sun, Y. S., Lu, X. B., Zhang, S. T., Zhang, R., & Wang, X. Y. (2011). Kinetic study for Fe (NO3)3 catalyzed hemicellulose hydrolysis of different corn stover silages. Bioresource Technology, 102(3), 2936–2942.CrossRefGoogle Scholar
  17. 17.
    Wang, R. J., Sun, Y. S., Zhang, S. T., & Lu, X. B. (2012). Two-step pretreatment of corn stalk silage for increasing sugars production and decreasing the amount of catalyst. Bioresource Technology, 120, 290–294.CrossRefGoogle Scholar
  18. 18.
    Sun, Y. S., Lu, X. B., Zhang, R., Wang, X. Y., & Zhang, S. T. (2011). Pretreatment of corn stover silage with Fe (NO3)3 for reducing sugars production. Applied Biochemistry and Biotechnology, 164(6), 918–928.CrossRefGoogle Scholar
  19. 19.
    Yuan, Z. Y., Wen, Y. B., & Kapu, N. S. (2018). Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 247, 242–249.CrossRefGoogle Scholar
  20. 20.
    Qi, B. K., Chen, X. R., & Wan, Y. H. (2010). Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresource Technology, 101(13), 4875–4883.CrossRefGoogle Scholar
  21. 21.
    Kapu, N. U. S., Manning, M., Hurley, T. B., Voigt, J., Cosgrove, D. J., & Romaine, C. P. (2012). Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars. Bioresource Technology, 114, 399–405.CrossRefGoogle Scholar
  22. 22.
    Oleskowicz-Popiel, P., Thomsen, A. B., & Schmidt, J. E. (2011). Ensiling−wet-storage method for lignocellulosic biomass for bioethanol production. Biomass and Bioenergy, 35(5), 2087–2092.CrossRefGoogle Scholar
  23. 23.
    Qing, Q., Yang, B., & Wyman, C. E. (2010). Impact of surfactants on pretreatment of corn Stover. Bioresource Technology, 101(15), 5941–5951.CrossRefGoogle Scholar
  24. 24.
    Rossberg, C., Steffien, D., Bremer, M., Koenig, S., Carvalheiro, F., Duarte, L. C., Moniz, P., Hoernicke, M., Bertau, M., & Fischer, S. (2014). Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate. Bioresource Technology, 169, 206–212.CrossRefGoogle Scholar
  25. 25.
    Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn Stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977.CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Lyu, G., Zhang, A., Li, X., & Xie, J. (2018). Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse. Bioresource Technology, 265, 93–101.CrossRefGoogle Scholar
  27. 27.
    Yoo, C. G., Lee, C. W., & Kim, T. H. (2011). Two-stage fractionation of corn stover using aqueous ammonia and hot water. Applied Biochemistry and Biotechnology, 164(6), 729–740.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental EngineeringHebei University of TechnologyTianjinChina
  2. 2.Institute of Oceanology, Chinese Academy of SciencesQingdaoChina

Personalised recommendations