Advertisement

Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus Strain TC13W Using Oil Palm Empty Fruit Bunch and Tuna Condensate as Substrates

  • Santat SinjaroonsakEmail author
  • Thanongsak Chaiyaso
  • Aran H-Kittikun
Article

Abstract

The modified medium composed of the alkaline-pretreated oil palm empty fruit bunch (APEFB) and tuna condensate powder was used for cellulase and xylanase productions by Streptomyces thermocoprophilus strain TC13W. The APEFB contained 74.46% (w/w) cellulose, 15.72% (w/w) hemicellulose, and 6.40% (w/w) lignin. The tuna condensate powder contained 55.49% (w/w) protein and 11.05% (w/w) salt. In the modified medium with only 6.75 g/l tuna condensate powder, 10 g/l APEFB, and 0.5 g/l Tween 80, S. thermocoprophilus strain TC13W produced cellulase 4.9 U/ml and xylanase 9.0 U/ml. The enzyme productions in the modified medium were lower than cellulase (6.0 U/ml) and xylanase (12.0 U/ml) productions in the complex medium (CaCl2 0.1, MgSO4·7H2O 0.1, KH2PO4 0.5, K2HPO4 1.0, NaCl 0.2, yeast extract 5.0, NH4NO3 1.0, Tween 80 0.5). When tuna condensate powder in the modified medium was reduced to 5.0 g/l and Tween 80 was increased to 1.5 g/l, S. thermocoprophilus strain TC13W produced cellulase and xylanase activities of 9.1 and 12.1 U/ml, respectively. This study shows that the cost of enzyme production could be reduced by using pretreated EFB and tuna condensate as a carbon and a nitrogen source, respectively.

Keywords

Cellulase Empty fruit bunch Tuna condensate Xylanase Streptomyces thermocoprophilus 

Notes

Funding Information

This research was partly supported by the Strategic Scholarships of Frontier Research Network (Specific for the Southern region), the Office of the Higher Education Commission (Grant no. 022/2012), National Research Council of Thailand (Grant year 2014), and the Graduate School of Prince of Songkla University.

Compliance with Ethical Standards

This study was funded by Strategic Scholarships of Frontier Research Network (Specific for the Southern region), the Office of the Higher Education Commission (Grant no. 022/2012), National Research Council of Thailand (Grant year 2014), and the Graduate School of Prince of Songkla University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants of this study.

References

  1. 1.
    Sridevi, A., Ramanjaneyulu, G., & Suvarnalatha Devi, P. (2017). Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3. Biotechnology, 7(4), 1–9.Google Scholar
  2. 2.
    Ibrahim, N. A., Abdel-Aziz, M. S., Eid, B. M., Hamdy, S. M., & Abdallah, S. E. (2016). Biosynthesis, optimization and potential textile application of fungal cellulases/xylanase multifunctional enzyme preparation from Penicillium sp. SAF6. Biocatalysis and Biotransformation, 34(3), 128–136.Google Scholar
  3. 3.
    Walia, A., Guleria, S., Mehta, P., Chauhan, A., & Parkash, J. (2017). Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech, 7(1), 1–12.Google Scholar
  4. 4.
    Kumar, V., Marín-Navarro, J., & Shukla, P. (2016). Thermostable microbial xylanases for pulp and paper industries: Trends, applications and further perspectives. World Journal of Microbiology and Biotechnology, 32(34), 1–10.Google Scholar
  5. 5.
    Buzała, K. P., Przybysz, P., Kalinowska, H., & Derkowska, M. (2016). Effect of cellulases and xylanases on refining process and Kraft pulp properties. PLoS One, 11(8), 1–14.Google Scholar
  6. 6.
    Li, X., Chang, S. H., & Liu, R. (2018). Industrial applications of cellulases and hemicellulases. In X. Fang & Y. Qu (Eds.), Fungal cellulolytic enzymes: Microbial production and application (pp. 267–282). Singapore: Springer Singapore.Google Scholar
  7. 7.
    Vinod Kumar, N., Rani, M. E., Gunaseeli, R., & Kannan, N. D. (2018). Paper pulp modification and deinking efficiency of cellulase-xylanase complex from Escherichia coli SD5. International Journal of Biological Macromolecules, 111, 289–295.Google Scholar
  8. 8.
    Dodo, C. M., Mamphweli, S., & Okoh, O. (2017). Bioethanol production from lignocellulosic sugarcane leaves and tops. Journal of Energy in Southern Africa, 28(3), 1–11.Google Scholar
  9. 9.
    Manfredi, A. P., Ballesteros, I., Sáez, F., Perotti, N. I., Martínez, M. A., & Negro, M. J. (2018). Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresource Technology, 260, 241–247.Google Scholar
  10. 10.
    Camesasca, L., Ramírez, M. B., Guigou, M., Ferrari, M. D., & Lareo, C. (2015). Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass and Bioenergy, 74, 193–201.Google Scholar
  11. 11.
    He, L., Han, Q., Jameel, H., Chang, H., Phillips, R., & Wang, Z. (2018). Comparison of one-stage batch and fed-batch enzymatic hydrolysis of pretreated hardwood for the production of biosugar. Applied Biochemistry and Biotechnology, 184(4), 1441–1452.Google Scholar
  12. 12.
    Waghmare, P. R., Watharkar, A. D., Jeon, B.-H., & Govindwar, S. P. (2018). Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: An eco-friendly strategy for renewable energy. 3 Biotech, 8(158), 1–10.Google Scholar
  13. 13.
    Yuan, Z., Wen, Y., & Kapu, N. S. (2018). Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 247, 242–249.Google Scholar
  14. 14.
    Florencio, C., Badino, A. C., & Farinas, C. S. (2019). Addition of soybean protein improves saccharification and ethanol production from hydrothermally pretreated sugarcane bagasse. BioEnergy Research, 1–13.Google Scholar
  15. 15.
    Marques, N. P., de Cassia Pereira, J., Gomes, E., da Silva, R., Araújo, A. R., Ferreira, H., Rodrigues, A., Dussán, K. J., & Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 122, 66–75.Google Scholar
  16. 16.
    Mejias, L., Cerda, A., Barrena, R., Gea, T., & Sánchez, A. (2018). Microbial strategies for cellulase and xylanase production through solid-state fermentation of digestate from biowaste. Sustainability, 10, 1–15.Google Scholar
  17. 17.
    Hernández, C., Milagres, A. M. F., Vázquez-Marrufo, G., Muñoz-Páez, K. M., García-Pérez, J. A., & Alarcón, E. (2018). An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Folia Microbiologica, 63(4), 467–478.Google Scholar
  18. 18.
    Astolfi, V., Astolfi, A. L., Mazutti, M. A., Rigo, E., Di Luccio, M., Camargo, A. F., … Treichel, H. (2019). Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess and Biosystems Engineering, 1–9.Google Scholar
  19. 19.
    Bentil, J. A., Thygesen, A., Mensah, M., Lange, L., & Meyer, A. S. (2018). Cellulase production by white-rot basidiomycetous fungi: Solid-state versus submerged cultivation. Applied Microbiology and Biotechnology, 102(14), 5827–5839.Google Scholar
  20. 20.
    Irfan, M., Asghar, U., Nadeem, M., Nelofer, R., & Syed, Q. (2016). Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. Journal of Radiation Research and Applied Sciences, 9(2), 139–147.Google Scholar
  21. 21.
    Aslam, S., Hussain, A., & Qazi, J. I. (2019). Production of cellulase by Bacillus amyloliquefaciens-ASK11 under high chromium stress. Waste and Biomass Valorization, 10(1), 53–61.Google Scholar
  22. 22.
    Ahamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), 399–407.Google Scholar
  23. 23.
    Wen, Z., Liao, W., & Chen, S. (2005). Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40(9), 3087–3094.Google Scholar
  24. 24.
    Salihu, A., Abbas, O., Sallau, A. B., & Alam, M. Z. (2015). Agricultural residues for cellulolytic enzyme production by Aspergillus niger: Effects of pretreatment. 3 Biotech, 5, 1101–1106.Google Scholar
  25. 25.
    Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32(7), 1341–1346.Google Scholar
  26. 26.
    Rodrigues, A. L. P., Cruz, G., Souza, M. E. P., & Gomes, W. C. (2018). Application of cassava harvest residues (Manihot esculenta Crantz) in biochemical and thermochemical conversion process for bioenergy purposes: A literature review. African Journal of Biotechnology, 17(3), 37–50.Google Scholar
  27. 27.
    Sarker, T. C., Azam, S. M. G. G., & Bonanomi, G. (2017). Recent advances in sugarcane industry solid by-products valorization. Waste and Biomass Valorization, 8(2), 241–266.Google Scholar
  28. 28.
    Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1–15.Google Scholar
  29. 29.
    Kaddami, H., Dufresne, A., Khelifi, B., Bendahou, A., Taourirte, M., Raihane, M., Issartel, N., Sautereau, H., Gérard, J. F., & Sami, N. (2006). Short palm tree fibers – Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing, 37(9), 1413–1422.Google Scholar
  30. 30.
    Thailand Board of Investment (2017). Thailand investment review (online). Avialable https://www.boi.go.th. Accessed 15 Sept 2018.
  31. 31.
    Garcia-Sanda, E., Omil, F., & Lema, J. M. (2003). Clean production in fish canning industries: Recovery and reuse of selected wastes. Clean Technologies and Environmental Policy, 5(3), 289–294.Google Scholar
  32. 32.
    Sanchart, C., Watthanasakphuban, N., Boonseng, O., Nguyen, T.-H., Haltrich, D., & Maneerat, S. (2018). Tuna condensate as a promising low-cost substrate for glutamic acid and GABA formation using Candida rugosa and Lactobacillus futsaii. Process Biochemistry, 70, 29–35.Google Scholar
  33. 33.
    Kongkum, R., Maneerat, S., & H-Kittikun, A. (2016). Bacteriocin production by Enterococcus faecalis TS9S17 in MRS medium with tuna condensate as a nitrogen source and its characteristics. Walailak Journal of Science and Technology (WJST), 14(12), 941–952.Google Scholar
  34. 34.
    Ding, C. H., Jiang, Z. Q., Li, X. T., Li, L. T., & Kusakabe, I. (2004). High activity xylanase production by Streptomyces olivaceoviridis E-86. World Journal of Microbiology and Biotechnology, 20(1), 7–10.Google Scholar
  35. 35.
    Medouni-Haroune, L., Zaidi, F., Medouni-Adrar, S., Kernou, O. N., Azzouz, S., & Kecha, M. (2018). Bioconversion of olive pomace by submerged cultivation of Streptomyces sp. S1M3I. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(4), 1425–1433.Google Scholar
  36. 36.
    Chaiyaso, T., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., & Hanmoungjai, P. (2011). Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett-Burman and response surface methodological approaches. Bioscience, Biotechnology, and Biochemistry, 75(3), 531–537.Google Scholar
  37. 37.
    Bispo, A. S. R., Andrade, J. P., Souza, D. T., Teles, Z. N. S., Nascimento, R. P., Bispo, A. S. R., … Nascimento, R. P. (2018). Utilization of agroindustrial by products as substrate in endoglucanase production by Streptomyces diastaticus PA-01 under submerged fermentation. Brazilian Journal of Chemical Engineering, 35(2), 429–440.Google Scholar
  38. 38.
    Grigorevski de Lima, A. L., Pires do Nascimento, R., da Silva Bon, E. P., & Coelho, R. R. R. (2005). Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology, 37(2), 272–277.Google Scholar
  39. 39.
    Kamcharoen, A., Champreda, V., Eurwilaichitr, L., & Boonsawang, P. (2014). Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design. International Journal of Energy and Environmental Engineering, 5(4), 303–312.Google Scholar
  40. 40.
    Association of Official Analytical Chemists (1990). Official methods of analysis of the association of official analytical chemists (15th edn.). Washington D.C.: AOAC.Google Scholar
  41. 41.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.Google Scholar
  42. 42.
    Sá-Pereira, P., Costa-Ferreira, M., & Aires-Barros, M. R. (2002). Enzymatic properties of a neutral endo-1,3(4)-β-xylanase Xyl II from Bacillus subtilis. Journal of Biotechnology, 94(3), 265–275.Google Scholar
  43. 43.
    Gavristov, A. V., Afanas’eva, V. P., Zhitskaia, E. A., Golovina, N. S., & Nakhapetian, L. A. (1985). Effect of vitamins and various amino acids on glucose isomerase biosynthesis by Streptomyces albogriseolus culture. Mikrobiologiia, 54(1), 55–61.Google Scholar
  44. 44.
    Budihal, S. R., Agsar, D., & Patil, S. R. (2016). Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresource Technology, 200, 706–712.Google Scholar
  45. 45.
    Saratale, G. D., Saratale, R. G., & Oh, S. E. (2012). Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass and Bioenergy, 47, 302–315.Google Scholar
  46. 46.
    Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364.Google Scholar
  47. 47.
    Reis, L., Ritter, C. E. T., Fontana, R. C., Camassola, M., & Dillon, A. J. P. (2015). Statistical optimization of mineral salt and urea concentration for cellulase and xylanase production by Penicillium echinulatum in submerged fermentation. Brazilian Journal of Chemical Engineering, 32(1), 13–22.Google Scholar
  48. 48.
    Prasad, P., Bedi, S., & Singh, T. (2012). In vitro cellulose rich organic material degradation by cellulolytic Streptomyces albospinus (MTCC 8768). Malaysian Journal of Microbiology, 8(3), 164–169.Google Scholar
  49. 49.
    Chellapandi, P., & Jani, H. M. (2008). Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Brazilian Journal of Microbiology, 39(1), 122–127.Google Scholar
  50. 50.
    Jyotsna, K. P., Rao, A. R., & Devaki, K. (2015). Effect of nutritional factors on cellulase production by Streptomyces albaduncus from the gut of earthworm, Eisenia foetida. Pest Management In Horticultural Ecosystems, 21(1), 75–80.Google Scholar
  51. 51.
    Kluepfel, D., Shareck, F., Mondou, F., & Morosoli, R. (1986). Characterization of cellulase and xylanase activities of Streptomyces lividans. Applied Microbiology and Biotechnology, 24(3), 230–234.Google Scholar
  52. 52.
    Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress, 22(2), 449–453.Google Scholar
  53. 53.
    Zeng, G. M., Shi, J. G., Yuan, X. Z., Liu, J., Zhang, Z. B., Huang, G. H., Li, J. B., Xi, B. D., & Liu, H. L. (2006). Effects of tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme and Microbial Technology, 39(7), 1451–1456.Google Scholar
  54. 54.
    Pardo, A. G. (1996). Effect of surfactants on cellulase production by Nectria catalinensis. Current Microbiology, 33(4), 275–278.Google Scholar
  55. 55.
    Liu, J., Yuan, X., Zeng, G., Shi, J., & Chen, S. (2006). Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry, 41(11), 2347–2351.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial Biotechnology, Faculty of Agro-IndustryPrince of Songkla UniversityHat YaiThailand
  2. 2.Department of Biotechnology, Faculty of Agro-IndustryChiang Mai UniversityChiang MaiThailand

Personalised recommendations