Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 1, pp 26–36 | Cite as

Establishment of CRISPR/Cas9-Mediated Knock-in System for Porcine Cells with High Efficiency

  • Juqing Zhang
  • Zhenshuo Zhu
  • Wei Yue
  • Jiaxin Li
  • Qiang Chen
  • Yuan Yan
  • Anmin Lei
  • Jinlian HuaEmail author
Article

Abstract

Since the birth of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, the new genome engineering technology has become a hot topic in the scientific community. However, for swine, the system of pig cells’ homology directed repair (HDR) is generally unstable and costly. Here, we aim to make knock-in of porcine cells more realizable. The Rosa26 locus was chosen for gene editing. Through the optimization of strategy, an efficient sgRNA was selected by TIDE analysis. Correspondingly, a vector system was constructed for gene insertion in pRosa26 locus by homologous recombination. A large percentage of cells whose gene is edited easily result in apoptosis. To improve the positive rate, culturing systems have been optimized. Sequence alignment and nuclear transfer confirmed that we got two knock-in cell lines and transgene primary porcine fetal fibroblasts (PFFs) successfully. Results showed that the gene editing platform we used can obtain genetically modified pig cells stably and efficiently. This system can contribute to pig gene research and production of transgenic pigs.

Keywords

CRISPR/Cas9 Knock-in HDR PFFs Pig Transgene 

Notes

Authors’ Contributions

Juqing Zhang and Jinlian Hua designed the study and wrote the manuscript. Juqing Zhang performed most experiments. Zhenshuo Zhu, Wei Yue, Jiaxin Li, Qiang Chen, Yuan Yan, Anmin Lei analyzed the data.

Funding Information

This work was supported by grants from the Program of National Natural Science Foundation of China (31572399), The National Key Research and Development Program of China, Stem Cell and Translational Research (Grant No. 2016YFA0100203).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2019_2984_Fig5_ESM.png (2 mb)
Figure S1.

We sequenced the left side and found that the result was as expected. (A) PCR results showed that we got PFFs which occurred knockin. Primer KI-GFP-Left-F is on the genome upstream the left homologous arm, and primer KI-GFP-Left-R is targeting the insertion sequence. The length of the product is 2145 bp. (B) Sequence alignment results show that editing of purified cells is accurate. (PNG 2086 kb)

12010_2019_2984_MOESM1_ESM.tif (365 kb)
High Resolution Image (TIF 364 kb)

References

  1. 1.
    Gaj, T., Gersbach, C. A., Carlos, F., & Barbas, I. (2013). ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, 15539–15540.CrossRefGoogle Scholar
  3. 3.
    Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cristea, S., Freyvert, Y., Santiago, Y., Holmes, M. C., Urnov, F. D., Gregory, P. D., & Cost, G. J. (2013). In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnology and Bioengineering, 110(3), 871–880.CrossRefPubMedGoogle Scholar
  5. 5.
    Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., & Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18(1), 13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chu, V. T., Weber, T., Graf, R., Sommermann, T., Petsch, K., Sack, U., Volchkov, P., Rajewsky, K., & Kühn, R. (2016). Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology, 16, 1–15.CrossRefGoogle Scholar
  7. 7.
    Yan, S., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., & Lai, C. (2018). A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's Disease. Cell, 173(4), 989–1002.e13.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kersten, K., de Visser, K. E., van Miltenburg, M. H., & Jonkers, J. (2017). Genetically engineered mouse models in oncology research and cancer medicine. EMBO Molecular Medicine, 9(2), 137–153.CrossRefPubMedGoogle Scholar
  9. 9.
    Cui, Y., Niu, Y., Zhou, J., Chen, Y., Cheng, Y., Li, S., Ai, Z., Chu, C., Wang, H., & Zheng, B. (2018). Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Research, 28(3), 383–386.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ahmad, H. I., Ahmad, M. J., Asif, A. R., Adnan, M., Iqbal, M. K., Mehmood, K., Muhammad, S. A., Bhuiyan, A. A., Elokil, A., & Du, X. (2018). A review of CRISPR-based genome editing: survival, evolution and challenges. Current Issues in Molecular Biology, 28, 47–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Chu, V. T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., & Kühn, R. (2015). Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 33(5), 543–548.CrossRefPubMedGoogle Scholar
  12. 12.
    Yu, H., Long, W., Zhang, X., Xu, K., Guo, J., Zhao, H., Li, H., Qing, Y., Pan, W., & Jia, B. (2018). Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. Journal of Translational Medicine, 16(1), 41.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., Liu, Z., Mu, Y., Yang, S., & Ouyang, H. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5(1), 14253.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang, K., Jin, Q., Ruan, D., Yang, Y., Liu, Q., Wu, H., Zhou, Z., Ouyang, Z., Liu, Z., & Zhao, Y. (2017). Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Research, 27(12), 2061–2071.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., & Liu, Z. (2014). Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 24(4), 501–504.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li, M., Ouyang, H., Yuan, H., Li, J., Xie, Z., Wang, K., Yu, T., Liu, M., Chen, X., & Tang, X. (2018). Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 Genesgenetics, 8(5), 1747–1754.CrossRefGoogle Scholar
  17. 17.
    Deng, C. & Pan, Y. (2016) Comparison between homologous recombination and Gibson assembly method in constructing adenovirus vectors. Journal of Guiyang Medical College, 41(4), 430–435.Google Scholar
  18. 18.
    Niu, D., Wei, H. J., Lin, L., George, H., Wang, T., Lee, I. H., Zhao, H. Y., Wang, Y., Kan, Y., & Shrock, E. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 357(6357), 1303–1307.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ying, M., Zhuo, C., & Zang, W. (2011). Optimization on cationic liposome-mediated cell transfection of plasmid DNA. Oncology and Translational Medicine, 10(5), 290–292.Google Scholar
  20. 20.
    Wang, K., Tang, X., Xie, Z., Zou, X., Li, M., Yuan, H., Guo, N., Ouyang, H., Jiao, H., & Pang, D. (2017). CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Research, 26, 1–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Nemudryi, A. A., Valetdinova, K. R., Medvedev, S. P., & Zakian, S. M. (2014). TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae, 6, 19.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li, N., Ma, W., Shen, Q., Zhang, M., Du, Z., Wu, C., Niu, B., Liu, W. & Hua, J. (2019) Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro. Cell death and differentiation, 1.Google Scholar
  23. 23.
    Xie, Z., Pang, D., Wang, K., Li, M., Guo, N., Yuan, H., Li, J., Zou, X., Jiao, H., & Ouyang, H. (2017). Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts. Scientific Reports, 7(1), 3036.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vouillot, L., Thélie, A., & Pollet, N. (2015). Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda), 5, 407–415.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Trends in Genetics Tig, 8, 2281–2308.Google Scholar
  26. 26.
    Chen, H., Choi, J., & Bailey, S. (2014). Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. The Journal of Biological Chemistry, 289(19), 13284–13294.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Thomas, K. R., Folger, K. R., & Capecchi, M. R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell, 44(3), 419–428.CrossRefPubMedGoogle Scholar
  28. 28.
    Jazayeri, S. H., Amiri-Yekta, A., Bahrami, S., Gourabi, H., Sanati, M. H., & Khorramizadeh, M. R. (2018). Vector and cell line engineering technologies toward recombinant protein expression in mammalian cell lines. Applied Biochemistry and Biotechnology, 185(4), 986–1003.Google Scholar
  29. 29.
    Srinivasan, A., & Gold, B. (2012). Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Medicinal Chemistry, 4(9), 1093–1111.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Welter, M. W., Welter, C. J., Chambers, D. M., & Svensson, L. (1991). Adaptation and serial passage of porcine group C rotavirus in ST-cells, an established diploid swine testicular cell line. Archives of Virology, 120(3-4), 297–304.CrossRefPubMedGoogle Scholar
  31. 31.
    Li, S., Flisikowska, T., Kurome, M., Zakhartchenko, V., Kessler, B., Saur, D., Kind, A., Wolf, E., Flisikowski, K., & Schnieke, A. (2014). Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS One, 9(7), e102455.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang, Y., Liu, S., Cheng, Y., Nie, L., Lv, C., Wang, G., Zhang, Y., & Hao, L. (2016). Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Applied Biochemistry and Biotechnology, 180, 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina

Personalised recommendations