Inhibitory Effects of Vanadium-Binding Proteins Purified from the Sea Squirt Halocynthia roretzi on Adipogenesis in 3T3-L1 Adipocytes

  • Minoli Anuththara Gunasinghe
  • Aaron Taehwan Kim
  • Sang Moo KimEmail author


The inhibitory effects of vanadium-binding proteins (VBPs) from the blood plasma and the intestine of sea squirt on adipogenesis in 3T3-L1 adipocytes were examined. 3T3L-1 cells treated with VBP blood plasma decreased markedly the lipid content in maturing pre-adipocytes in a dose-dependent manner, whereas VBP intestine did not show significant effects on lipid accumulation. Both VBPs did not have significant effect on cell viability. In order to demonstrate the anti-adipogenic effects of VBP blood plasma, the expressions of several adipogenic transcription factors and enzymes were investigated by Reverse Transcriptase-Polymerase Chain Reaction. VBP blood plasma down-regulated the expressions of transcription factors; PPAR-γ, C/EBP-α, SREBP1, and FAS, but did not have significant effects on the expressions of lipolytic enzymes; HSL and LPL. Both the crude and purified VBPs significantly increased the mRNA levels of Wnt10b, FZ1, LRP6, and β-catenin, while decreased the expression of GSK-3β. Hence, VBP blood plasma inhibited adipogenesis by activating WNT/β-catenin pathway via the activation of Wnt10b. Based on the findings, VBP blood plasma decreased lipid accumulation which was mediated by decreasing adipogenesis, not by lipolysis. Therefore, VBP blood plasma could be used to treat obesity.


Adipogenesis 3T3-L1 cells Sea squirt Vanadium-binding proteins 



This research was part of the project entitled “Future Marine Technology Development” funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siersbæk, R., Nielsen, R., & Mandrup, S. (2012). Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends in Endocrinology and Metabolism, 23(2), 56–64.CrossRefGoogle Scholar
  2. 2.
    Rosen, E. D., & Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444(7121), 847–853.CrossRefGoogle Scholar
  3. 3.
    Bae, K. H., Kim, W. K., & Lee, S. C. (2012). Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets? BMB Reports, 45(12), 700–706.CrossRefGoogle Scholar
  4. 4.
    Farmer, S. R. (2008). Molecular determinants of brown adipocyte formation and function. Genes & Development, 22(10), 1269–1275.CrossRefGoogle Scholar
  5. 5.
    Bouzid, T., Hamel, F. G., & Lim, J. Y. (2016). Journal of Diabetes Research, 5, 75–85.Google Scholar
  6. 6.
    Lefterova, E. D., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism, 20(3), 107–114.CrossRefGoogle Scholar
  7. 7.
    Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding Adipocyte Differentiation. Physiological Reviews, 78(3), 783–809.CrossRefGoogle Scholar
  8. 8.
    Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., & Spiegelman, B. M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes & Development, 16(1), 22–26.CrossRefGoogle Scholar
  9. 9.
    Kim, J. B., Wright, H. M., Wright, M., & Spiegelman, B. M. (1998). ADD1/SREBP1 activates PPAR through the production of endogenous ligand. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4333–4337.CrossRefGoogle Scholar
  10. 10.
    Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., AcKeon, C., Darlington, G., & Spiegelmsn, B. M. (1999). Molecular Cell, 3(2), 151–158.CrossRefGoogle Scholar
  11. 11.
    Kim, J. B., Wright, H. M., Wright, M., & Spiegelman, B. M. (1998). Genes & Development, 10, 1096–1007.CrossRefGoogle Scholar
  12. 12.
    Yokoyama, C., Spiegelmsn, B. M., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., Goldstein, J. L., & Brown, M. S. (1993). SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 75(1), 187–197.CrossRefGoogle Scholar
  13. 13.
    Pessoa, J. C., Garribba, E., Santos, M. F. A., & Santos-Silva, T. (2015). Coordination Chemistry Reviews, 301(302), 49–86.CrossRefGoogle Scholar
  14. 14.
    Yoshihara, M., Ueki, T., Yamaguchi, N., Kaminom, K., & Michibata, H. (2008). Biochimica et Biophysica Acta, 1780, 56–63.Google Scholar
  15. 15.
    Yoshinaga, M., Ueki, T., & Michibata, H. (2007). Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochimica et Biophysica Acta, 1770(9), 1413–1418.CrossRefGoogle Scholar
  16. 16.
    Ueki, T., Adachi, T., Kawano, S., Aoshima, M., & Yamaguchi, N. (2003). Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochimica et Biophysica Acta, 1626(1–3), 43–50.CrossRefGoogle Scholar
  17. 17.
    McNeill, J. H., Yeun, V. G., Dai, S., & Orvig, C. (1995). Increased potency of vanadium using organic ligands. Molecular and Cellular Biochemistry, 153(1-2), 175–180.CrossRefGoogle Scholar
  18. 18.
    Srivastava, A. K. (1999). Molecular and Cell Biology, 206, 177–182.Google Scholar
  19. 19.
    Liu, Y., Xu, H., Xu, J., Guo, Y., Xue, Y., Wang, J., & Xue, C. (2015). Vanadium-binding protein from vanadium-enriched sea cucumber Apostichopus japonicus inhibits adipocyte differentiation through activating WNT/β-catenin pathway. Journal of Functional Foods, 17, 504–513.CrossRefGoogle Scholar
  20. 20.
    Ueki, T., & Michibata, H. (2011). Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coordination Chemistry Reviews, 255(19-20), 2249–2257.CrossRefGoogle Scholar
  21. 21.
    Gunasinghe, M. A., & Kim, S. M. (2018). Antioxidant and antidiabetic activities of vanadium binding proteins purified from the sea squirt Halocynthia roretzi. Journal of Food Science and Technology, 55(5), 1840–1849.CrossRefGoogle Scholar
  22. 22.
    Kruger, N. J. (1994). In methods in molecular biology. In J. M. Walker (Ed.), The Bradford method for protein quantitation (Vol. 32, pp. 9–15). Totowa: Humana.Google Scholar
  23. 23.
    Laemmli, U. K., & Favre, M. (1973). Maturation of the head of bacteriophage T4. Journal of Molecular Biology, 80(4), 575–592.CrossRefGoogle Scholar
  24. 24.
    Feng, Z., Yu, H. N., Cui, X. M., Wang, Z. C., Shen, S. R., & Das, U. N. (2014). Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition, 30(3), 319–325.CrossRefGoogle Scholar
  25. 25.
    Cortizo, A. M., Bruzzone, L., Molinuevo, S., & Etcheverry, S. B. (2000). A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology, 147(2), 89–99.CrossRefGoogle Scholar
  26. 26.
    Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemical Reviews, 104(2), 849–902.CrossRefGoogle Scholar
  27. 27.
    Nechay, B. R. (1984). Mechanisms of action of vanadium. Annual Review of Pharmacology and Toxicology, 24(1), 501–524.CrossRefGoogle Scholar
  28. 28.
    Peters, K. G., Davis, M. G., Howard, B. W., Pokross, M., Rastogi, V., Diven, C., Greis, K. D., Eby-Wilkens, E., Maier, M., Evdokimov, A., Soper, S., & Genbauffe, F. (2003). Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. Journal of Inorganic Biochemistry, 96(2-3), 321–330.CrossRefGoogle Scholar
  29. 29.
    Green, H., & Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell, 5(1), 19–27.CrossRefGoogle Scholar
  30. 30.
    Yeh, W. C., Cao, Z., Classon, M., & McKnight, S. L. (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes & Development, 9(2), 168–181.CrossRefGoogle Scholar
  31. 31.
    Summers, S. A., Yin, V. P., Whiteman, E. L., Garza, L. A., Cho, H., Tuttle, R. L., & Birnbaum, M. J. (1999). Annals of the New York Academy of Sciences, 892, 169–186.CrossRefGoogle Scholar
  32. 32.
    Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metabolism, 4(4), 263–273.CrossRefGoogle Scholar
  33. 33.
    Tong, Q., & Hotamisligil, G. S. (2001). Molecular mechanisms of adipocyte differentiation. Reviews in Endocrine & Metabolic Disorders, 2(4), 349–355.CrossRefGoogle Scholar
  34. 34.
    Zechner, R1., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, A., & Madeo, F. (2012). FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metabolism, 15(3), 279–291.CrossRefGoogle Scholar
  35. 35.
    Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: the diverse biology of PPARγ. Annual Review of Biochemistry, 77(1), 289–312.CrossRefGoogle Scholar
  36. 36.
    Kim, S. P., Nam, S. H., & Friedman, M. (2015). Food funct. Annual Review of Biochemistry, 6, 2939–2948.Google Scholar
  37. 37.
    Linhart, H. G., Ishimura-Oka, K., DeMayo, F., Kibe, T., Repka, D., Poindexter, B., & Darlington, G. J. (2001). C/EBP is required for differentiation of white, but not brown, adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 98(22), 12532–12537.CrossRefGoogle Scholar
  38. 38.
    Fajas, L., Schoonjans, K., Gelman, L., Kim, J. B., Najib, J., Martin, G., Fruchart, J. C., Briggs, M., Spiegelman, B. M., & Auwerx, J. (1999). Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Molecular and Cellular Biochemistry, 19(8), 5495–5503.CrossRefGoogle Scholar
  39. 39.
    Clevers, H., Loh, K. M., & Nusse, R. (2014). An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346(6205), 1248012. Scholar
  40. 40.
    Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68–75.CrossRefGoogle Scholar
  41. 41.
    MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.CrossRefGoogle Scholar
  42. 42.
    Pakula, H., Xiang, D., & Li, Z. (2017). A tale of two signals: AR and WNT in development and tumorigenesis of prostate and mammary gland. Cancers, 9(12), 14. Scholar
  43. 43.
    Liu, J., & Farmer, S. R. (2004). Regulating the balance between peroxisome proliferator-activated receptor γ and β-catenin signaling during adipogenesis. The Journal of Biological Chemistry, 279(43), 45020–45027.CrossRefGoogle Scholar
  44. 44.
    Moldes, M., Zuo, Y., Morrison, R. F., Silva, D., Park, B. H., Liu, J., & Farmer, S. R. (2003). Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. The Biochemical Journal, 376(3), 607–613.CrossRefGoogle Scholar
  45. 45.
    Bennett, C. N., Ross, S. E., Longo, K. A., Bajnok, L., Hemati, N., Johnson, K. W., Harrison, S. D., & MacDougald, O. A. (2002). Regulation of Wnt signaling during adipogenesis. The Journal of Biological Chemistry, 277(34), 30998–31004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Marine Food Science and TechnologyGangneung-Wonju National UniversityGangneungRepublic of Korea
  2. 2.Department of Food Science and BiotechnologyKyung Hee UniversityYonginRepublic of Korea

Personalised recommendations