Advertisement

Fluoranthene Biodegradation by Serratia sp. AC-11 Immobilized into Chitosan Beads

  • A. C. F. S. Garcia
  • B. R. Araújo
  • W. G. Birolli
  • C. G. Marques
  • L. E. C. Diniz
  • A. M. BarbosaJr
  • A. L. M. Porto
  • Luciane Pimenta Cruz RomãoEmail author
Article
  • 13 Downloads

Abstract

The intensive production of polycyclic aromatic hydrocarbons by anthropogenic activities is a serious environmental problem. Therefore, new bioremediation methods are required to avoid widespread contamination. In this work, Serratia sp. AC-11 strain isolated from a tropical peat was selected for immobilization into chitosan beads, which were employed in the biodegradation of fluoranthene. The sizes of the produced beads were relatively uniform with an average diameter of 3 mm. The material was characterized by SEM and FT-IR, confirming the cells immobilization and the protective barrier formed by the chitosan surrounding the biomass. The immobilized bacteria were able to degrade 56% of fluoranthene (the initial concentration was 100 mg L−1) in just 1 day at twice the degradation rate achieved by free-living cells. Furthermore, the immobilized bacteria showed excellent removal during five reuse cycles, from 76% to 59% of biodegradation. These results showed the potential of this approach for remediation of contaminated sites.

Keywords

Peat Immobilization Entrapment PAH Bacteria Bioremediation 

Notes

Funding Information

Financial support for this work was provided by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, process no. 307029/2013-1) and Fundação de Apoio a Pesquisa e Inovação Tecnológica do Estado de Sergipe (FAPITEC/SE, process no. 01920300723/201-1).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pugazhendi, A., Qari, H., Basahi, J. M. A., Godon, J. J., & Dhavamani, J. (2017). Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration and Biodegradation, 121, 44–54.CrossRefGoogle Scholar
  2. 2.
    Singh, P., & Tiwary, B. N. (2017). Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatalysis and Agricultural Biotechnology, 10, 20–29.CrossRefGoogle Scholar
  3. 3.
    Mishra, S., Singh, S. N., & Pande, V. (2014). Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresource Technology, 164, 299–308.CrossRefGoogle Scholar
  4. 4.
    Ahmed, R. Z., & Ahmed, N. (2014). Effect of yeast extract on fluoranthene degradation and aromatic ring dioxygenase expressing bacterial community structure of a fluoranthene degrading bacterial consortium. International Biodeterioration and Biodegradation, 88, 56–61.CrossRefGoogle Scholar
  5. 5.
    Ma, Y. L., Lu, W., Wan, L. L., & Luo, N. (2015). Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Applied Biochemistry and Biotechnology, 175(3), 1294–1305.CrossRefGoogle Scholar
  6. 6.
    Kamyabi, A., Nouri, H., & Moghimi, H. (2017). Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production. Applied Biochemistry and Biotechnology, 182(1), 324–334.CrossRefGoogle Scholar
  7. 7.
    Birolli, W. G., Santos, D. A., Alvarenga, N., Garcia, A. C. F. S., Romão, L. P. C., & Porto, A. L. M. (2017). Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Marine Pollution Bulletin, 129, 525–533.CrossRefGoogle Scholar
  8. 8.
    Kumar, S., Upadhayay, S. K., Kumari, B., Tiwari, S., Singh, S. N., & Singh, P. K. (2011). In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresource Technology, 102(4), 3709–3715.CrossRefGoogle Scholar
  9. 9.
    Jin, X., Tian, W. J., Liu, Q., Qiao, K. L., Zhao, J., & Gong, X. X. (2017). Biodegradation of the benzo a pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization. Marine Pollution Bulletin, 117(1-2), 283–290.CrossRefGoogle Scholar
  10. 10.
    Ontanon, O. M., Gonzalez, P. S., Barros, G. G., & Agostini, E. (2017). Improvement of simultaneous Cr(VI) and phenol removal by an immobilised bacterial consortium and characterisation of biodegradation products. New Biotechnology, 37, 172–179.CrossRefGoogle Scholar
  11. 11.
    Barreto, R. V. G., Hissa, D. C., Paes, F. A., Grangeiro, T. B., Nascimento, R. F., Rebelo, L. M., Craveiro, A. A., & Melo, V. M. M. (2010). New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads. Bioresource Technology, 101(7), 2121–2125.CrossRefGoogle Scholar
  12. 12.
    Deng, F. C., Liao, C. J., Yang, C., Guo, C. L., & Dang, Z. (2016). Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials. International Biodeterioration and Biodegradation, 110, 46–52.CrossRefGoogle Scholar
  13. 13.
    Costa, S. P., Angelim, A. L., Sousa, M., & Melo, V. M. M. (2014). Vegetative cells of Bacillus pumilus entrapped in chitosan beads as a product for hydrocarbon biodegradation. International Biodeterioration and Biodegradation, 87, 122–127.CrossRefGoogle Scholar
  14. 14.
    Bayat, Z., Hassanshahian, M., & Capello, S. (2015). Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiology Journal, 9, 48–54.Google Scholar
  15. 15.
    Sedarati, M. R., Keshavarz, T., Leontievsky, A. A., & Evans, C. S. (2003). Transformation of high concentrations of chlorophenols by the white-rot basidiomycete Trametes versicolor immobilized on nylon mesh. Electronic Journal of Biotechnology, 6, 104–114.Google Scholar
  16. 16.
    Rocha, L. C., de Souza, A. L., Rodrigues Filho, U. P., Campana Filho, S. P., Sette, L. D., & Porto, A. L. M. (2012). Immobilization of marine fungi on silica gel, silica xerogel and chitosan for biocatalytic reduction of ketones. Journal of Molecular Catalysis B: Enzymatic, 84, 160–165.CrossRefGoogle Scholar
  17. 17.
    Hoskeri, R. S., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatalysis and Agricultural Biotechnology, 3(4), 390–396.CrossRefGoogle Scholar
  18. 18.
    Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38–70.CrossRefGoogle Scholar
  19. 19.
    Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan-a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014.CrossRefGoogle Scholar
  20. 20.
    Cadogan, E. I., Lee, C. H., & Popuri, S. R. (2015). Facile synthesis of chitosan derivatives and Arthrobacter sp. biomass for the removal of europium(III) ions from aqueous solution through biosorption. International Biodeterioration and Biodegradation, 102, 286–297.CrossRefGoogle Scholar
  21. 21.
    Dumont, V. C., Mansur, H. S., Mansur, A. A., Carvalho, S. M., Capanema, N. S., & Barrioni, B. R. (2016). Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 93(Pt B), 1465–1478.CrossRefGoogle Scholar
  22. 22.
    Sotelo-Boyas, M. E., Correa-Pacheco, Z. N., Bautista-Banos, S., & Corona-Rangel, M. L. (2017). Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT- Food Science and Technology, 77, 15–20.CrossRefGoogle Scholar
  23. 23.
    Wangpradit, R., & Chitprasert, P. (2014). Chitosan-coated Lentinus polychrous Lev.: integrated biosorption and biodegradation systems for decolorization of anionic reactive dyes. International Biodeterioration and Biodegradation, 93, 168–176.CrossRefGoogle Scholar
  24. 24.
    Mukta, J. A., Rahman, M., Sabir, A. A., Gupta, D. R., Surovy, M. Z., & Islam, M. T. (2017). Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology, 11, 9–18.CrossRefGoogle Scholar
  25. 25.
    Hsieh, F. M., Huang, C., Lin, T. F., Chen, Y. M., & Lin, J. C. (2008). Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochemistry, 43(1), 83–92.CrossRefGoogle Scholar
  26. 26.
    Angelim, A. L., Costa, S. P., Farias, B. C. S., Aquino, L. F., & Melo, V. M. M. (2013). An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. Journal of Environmental Management, 127, 10–17.CrossRefGoogle Scholar
  27. 27.
    Madueno, L., Coppotelli, B. M., Alvarez, H. M., & Morelli, I. S. (2011). Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. International Biodeterioration & Biodegradation, 65(2), 345–351.CrossRefGoogle Scholar
  28. 28.
    Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C., & Shin, Y. C. (2004). Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology, 70(8), 4522–4531.CrossRefGoogle Scholar
  29. 29.
    Romao, L. P. C., Lead, J. R., Rocha, J. C., de Oliveira, L. C., Rosa, A. H., Mendonca, A. G. R., & Ribeiro, S. A. (2007). Structure and properties of Brazilian peat: analysis by spectroscopy and microscopy. Journal of the Brazilian Chemical Society, 18(4), 714–720.CrossRefGoogle Scholar
  30. 30.
    de Carvalho, P. H. V., de Jesus, A. M. D., Prata, V. M., Bezerra, D. S. S., Romao, L. P. C., & Navickiene, S. (2010). Tropical peat as a versatile material for solid-phase extraction of pesticides from medicinal plant Cordia salicifolia. Journal of the Brazilian Chemical Society, 21(4), 659–664.CrossRefGoogle Scholar
  31. 31.
    Costa, A. S., Romao, L. P. C., Araujo, B. R., Lucas, S. C. O., Maciel, S. T. A., Wisniewski, A., & Alexandre, M. R. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31–39.CrossRefGoogle Scholar
  32. 32.
    Batista, A. P. S., Romao, L. P. C., Arguelho, M., Garcia, C. A. B., Alves, J. P. H., Passos, E. A., & Rosa, A. H. (2009). Biosorption of Cr(III) using in natura and chemically treated tropical peats. Journal of Hazardous Materials, 163(2-3), 517–523.CrossRefGoogle Scholar
  33. 33.
    Cunha, G. D., Romao, L. P. C., Santos, M. C., Araujo, B. R., Navickiene, S., & de Padua, V. L. (2010). Adsorption of trihalomethanes by humin: batch and fixed bed column studies. Bioresource Technology, 101(10), 3345–3354.CrossRefGoogle Scholar
  34. 34.
    Andersen, R., Chapman, S. J., & Artz, R. R. E. (2013). Microbial communities in natural and disturbed peatlands: a review. Soil Biology and Biochemistry, 57, 979–994.CrossRefGoogle Scholar
  35. 35.
    Phang, I. R. K., Chan, Y. S., Wong, K. S., & Lau, S. Y. (2018). Isolation and characterization of urease-producing bacteria from tropical peat. Biocatalysis and Agricultural Biotechnology, 13, 168–175.CrossRefGoogle Scholar
  36. 36.
    Ashelford, K. E., Fry, J. C., Bailey, M. J., & Day, M. J. (2002). Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp nov. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 6), 2281–2289.Google Scholar
  37. 37.
    Pakala, S. B., Gorla, P., Pinjari, A. B., Krovidi, R. K., Baru, R., Yanamandra, M., Merrick, M., & Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a gram-negative Serratia sp. strain DS001. Applied Microbiology and Biotechnology, 73(6), 1452–1462.CrossRefGoogle Scholar
  38. 38.
    Vaaje-Kolstad, G., Horn, S. J., van Aalten, D. M. F., Synstad, B., & Eijsink, V. G. H. (2005). The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. The Journal of Biological Chemistry, 280(31), 28492–28497.CrossRefGoogle Scholar
  39. 39.
    Gupta, A., & Thakur, I. S. (2015). Biodegradation of wastewater organic contaminants using Serratia sp. ISTVKR1 isolated from sewage sludge. Biochemical Engineering Journal, 102, 115–124.CrossRefGoogle Scholar
  40. 40.
    Haq, I., Kumar, S., Kumari, V., Singh, S. K., & Raj, A. (2016). Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. Journal of Hazardous Materials, 305, 190–199.CrossRefGoogle Scholar
  41. 41.
    Machin-Ramirez, C., Morales, D., Martinez-Morales, F., Okoh, A. I., & Trejo-Hernandez, M. R. (2010). Benzo a pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. International Biodeterioration and Biodegradation, 64(7), 538–544.CrossRefGoogle Scholar
  42. 42.
    Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial alpha-amylases: a biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.CrossRefGoogle Scholar
  43. 43.
    Jobin, G., Couture, G. V., Goyer, C., Brzezinski, R., & Beaulieu, C. (2005). Streptomycete spores entrapped in chitosan beads as a novel biocontrol tool against common scab of potato. Applied Microbiology and Biotechnology, 68(1), 104–110.CrossRefGoogle Scholar
  44. 44.
    Zheng, F., Cui, B. K., Wu, X. J., Meng, G., Liu, H. X., & Si, J. (2016). Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration and Biodegradation, 110, 69–78.CrossRefGoogle Scholar
  45. 45.
    Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790–802.CrossRefGoogle Scholar
  46. 46.
    Leite, F., Modesto, C. M. D., do Nascimento, R. F., & Dias, F. S. (2005). Adsorção de Cd(II) de soluções aquosas em microesferas de n-carboximetil-quitosana. Revista Iberoamericana de Polímeros, 6, 213–236.Google Scholar
  47. 47.
    Naumann, D. (2000). Infrared spectroscopy in microbiology. In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (pp. 102–131). Chichester: Wiley.Google Scholar
  48. 48.
    Grube, M., Gavare, M., Nescerecka, A., Tihomirova, K., Mezule, L., & Juhna, T. (2013). FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay. Journal of Molecular Structure, 1044, 201–205.CrossRefGoogle Scholar
  49. 49.
    Kasaal, M. R. (2008). A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 71(4), 497–508.CrossRefGoogle Scholar
  50. 50.
    Kuyukina, M. S., Korshunova, I. O., Rubtsova, E. V., & Ivshina, I. B. (2014). Methods of microorganism immobilization for dynamic atomic-force studies (review). Applied Biochemistry and Microbiology, 50(1), 1–9.CrossRefGoogle Scholar
  51. 51.
    Kafilzadeh, F., Amiril, P., Jahromil, A. R., & Mojoodi, N. (2013). Isolation and molecular identification of fluoranthene degrading bacteria from the mangrove sediments in south of Iran. International Journal of Biosciences, 3, 60–67.CrossRefGoogle Scholar
  52. 52.
    Tao, X. Q., Lu, G. N., Liu, J. P., Li, T., & Yang, L. N. (2009). Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. International Journal of Environmental Research and Public Health, 6(9), 2470–2480.CrossRefGoogle Scholar
  53. 53.
    Xu, Y. H., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1-3), 395–401.CrossRefGoogle Scholar
  54. 54.
    Banerjee, I., Modak, J. M., Bandopadhyay, K., Das, D., & Maiti, B. R. (2001). Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida. Journal of Biotechnology, 87(3), 211–223.CrossRefGoogle Scholar
  55. 55.
    Sarma, S. J., & Pakshirajan, K. (2011). Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. International Biodeterioration and Biodegradation, 65(1), 73–77.CrossRefGoogle Scholar
  56. 56.
    Covizzi, L. G., Giese, E. C., Gomes, E., Dekker, R. F. H., & Silva, R. (2007). Immobilization of microbial cells and their biotechnological applications. Semin Ciências Exatas e Tecnológicas, 28(2), 143–160.CrossRefGoogle Scholar
  57. 57.
    Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368.CrossRefGoogle Scholar
  58. 58.
    Xu, H. X., Wu, H. Y., Qiu, Y. P., Shi, X. Q., He, G. H., Zhang, J. F., & Wu, J. C. (2011). Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation., 22(2), 335–345.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. C. F. S. Garcia
    • 1
  • B. R. Araújo
    • 1
  • W. G. Birolli
    • 2
  • C. G. Marques
    • 3
  • L. E. C. Diniz
    • 4
  • A. M. BarbosaJr
    • 5
  • A. L. M. Porto
    • 2
  • Luciane Pimenta Cruz Romão
    • 1
    Email author
  1. 1.Laboratory of Natural Organic Matter, Department of ChemistryFederal University of SergipeSao CristovaoBrazil
  2. 2.Laboratory of Organic Chemistry and Biocatalysis, Institute of Chemistry of São CarlosSão Paulo UniversitySao CarlosBrazil
  3. 3.Laboratory of Molecular Biodiversity and Conservation, Department of Genetics and EvolutionFederal University of São CarlosSao CarlosBrazil
  4. 4.Laboratory of Molecular BiologyBrazilian Agricultural Research Corporation (Embrapa)AracajuBrazil
  5. 5.Laboratory of Applied Microbiology, Department of MorphologyFederal University of SergipeSao CristovaoBrazil

Personalised recommendations