Advertisement

A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-d-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification

  • Da-Ming Wang
  • Lei Sun
  • Wen-Jing SunEmail author
  • Feng-Jie Cui
  • Jin-Song Gong
  • Xiao-Mei Zhang
  • Jin-Song Shi
  • Zheng-Hong XuEmail author
Article
  • 15 Downloads

Abstract

The membrane-bound gluconate dehydrogenase (mGADH) is a critical enzyme for 2-keto-d-gluconic acid (2KGA) production in Pseudomonas plecoglossicida JUIM01. The purified native flavin adenine dinucleotide-dependent mGADH (FAD-mGADH) was consisted of a gamma subunit, a flavoprotein subunit, and a cytochrome c subunit with molecular mass of ~ 27, 65, and 47 kDa, respectively. The specific activity of FAD-mGADH was determined as 90.71 U/mg at optimum pH and temperature of 6.0 and 35 °C. The Km and Vmax values of calcium d-gluconate were 0.631 mM and 0.734 mM/min. The metal ions Mg2+ and Mn2+ showed slight positive effects on FAD-mGADH activity. On the other hand, a 3868-bp-length gad gene cluster was amplified and expressed in Escherichia coli BL21(DE3). The recombinant protein showed the same molecular weight and enzyme activity as the native FAD-mGADH, which confirmed it as a FAD-mGADH encoding gene. The flavoprotein subunit and the cytochrome c subunit containing a putative FAD-binding motif and three possible heme-binding motifs concluded from alignment results of mGADHs. This study characterized the native and recombinant FAD-mGADH and would provide the basis for further genetic modification of Pseudomonas plecoglossicida JUIM01 with the intention of 2KGA productivity improvement.

Keywords

Pseudomonas plecoglossicida 2-Keto-d-gluconic acid (2KGA) Gluconate dehydrogenase Heterologous expression 

Notes

Acknowledgements

Many thanks go to Ph.D. Xue Cai (Jiangnan University) for her help regarding the language polish of this manuscript.

Funding Information

This work was financially supported by the National Natural Science Foundation of China (31571885), the Innovation Group Construction Program of Jiangxi Province (20142BCB24024), the Science & Technology Program of Jiangxi Province (No. [2015]64), Science & Technology Program of Dexing city (No. [2015]44), and the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-11 and LITE2018-18).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_2951_MOESM1_ESM.docx (4.1 mb)
ESM 1 (DOCX 4163 kb)

References

  1. 1.
    Stottmeister, U., Aurich, A., Wilde, H., Andersch, J., Schmidt, S., & Sicker, D. (2005). White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. Journal of Industrial Microbiology & Biotechnology, 32(11-12), 651–664.  https://doi.org/10.1007/s10295-005-0254-x.CrossRefGoogle Scholar
  2. 2.
    Pappenberger, G., & Hohmann, H. P. (2014). Industrial production of l-ascorbic acid (vitamin C) and d-isoascorbic acid. Advances in Biochemical Engineering/Biotechnology, 143, 143–188.  https://doi.org/10.1007/10_2013_243.CrossRefGoogle Scholar
  3. 3.
    Sun, W. J., Liu, C. F., Yu, L., Cui, F. J., Zhou, Q., Yu, S. L., & Sun, L. (2012). A novel bacteriophage KSL-1 of 2-keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action. BMC Microbiology, 12(1), 127.  https://doi.org/10.1186/1471-2180-12-127.CrossRefGoogle Scholar
  4. 4.
    Sun, W. J., Zhou, Y. Z., Zhou, Q., Cui, F. J., Yu, S. L., & Sun, L. (2012). Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Bioresource Technology, 110, 546–551.  https://doi.org/10.1016/j.biortech.2012.01.040.CrossRefGoogle Scholar
  5. 5.
    Umezawa, K., Takeda, K., Ishida, T., Sunagawa, N., Makabe, A., Isobe, K., Koba, K., Ohno, H., Samejima, M., Nakamura, N., Igarashi, K., & Yoshida, M. (2015). A novel pyrroloquinoline quinone-dependent 2-keto-d-glucose dehydrogenase from Pseudomonas aureofaciens. Journal of Bacteriology, 197(8), 1322–1329.  https://doi.org/10.1128/JB.02376-14.CrossRefGoogle Scholar
  6. 6.
    Chia, M., Van Nguyen, T. B., & Choi, W. J. (2008). DO-stat fed-batch production of 2-keto-d-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 78(5), 759–765.  https://doi.org/10.1007/s00253-008-1374-9.CrossRefGoogle Scholar
  7. 7.
    Sun, W. J., Xiao, F. F., Wei, Z., Cui, F. J., Yu, L., Yu, S. L., & Zhou, Q. (2015). Non-sterile and buffer-free bioconversion of glucose to 2-keto-gluconic acid by using Pseudomonas fluorescens AR4 free resting cells. Process Biochemistry, 50(4), 493–499.  https://doi.org/10.1016/j.procbio.2015.01.011.CrossRefGoogle Scholar
  8. 8.
    Wei, Z., Yu, S. L., Sun, W. J., Zhou, Q., & Li, Z. B. (2008). Research progress on fermentation production of 2-keto-d-gluconic acid. Food Science, 29, 636–639 (in Chinese).Google Scholar
  9. 9.
    Xue, Q., Wei, Z., Sun, W. J., Cui, F. J., Yu, S. L., Zhou, Q., & Liu, J. Z. (2015). 2-Keto-d-gluconate-yielding membrane-bound d-glucose dehydrogenase from Arthrobacter globiformis C224: purification and characterization. Molecules, 20(1), 846–862.  https://doi.org/10.3390/molecules20010846.CrossRefGoogle Scholar
  10. 10.
    Yang, G. F., Wei, Z., Sun, W. J., Cui, F. J., Wang, D. M., Yu, S. L., & Zhou, Q. (2015). Purification and enzymatic characterization of membrane-bound d-gluconate dehydrogenase from Arthrobacter globiformis. Journal of Molecular Catalysis B: Enzymatic, 113, 14–22.  https://doi.org/10.1016/j.molcatb.2014.12.014.CrossRefGoogle Scholar
  11. 11.
    Sun, W. J., Yun, Q. Q., Zhou, Y. Z., Cui, F. J., Yu, S. L., Zhou, Q., & Sun, L. (2013). Continuous 2-keto-gluconic acid (2KGA) production from corn starch hydrolysate by Pseudomonas fluorescens AR4. Biochemical Engineering Journal, 77, 97–102.  https://doi.org/10.1016/j.bej.2013.05.010.CrossRefGoogle Scholar
  12. 12.
    Ramakrishnan, T., & Campbell, J. J. (1955). Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochimica et Biophysica Acta, 17, 122–127.  https://doi.org/10.1016/0006-3002(55)90326-7.CrossRefGoogle Scholar
  13. 13.
    Matsushita, K., Shinagawa, E., Adachi, O., & Ameyama, M. (1979). Membrane-bound d-gluconate dehydrogenase from Pseudomonas aeruginosa: purification and structure of cytochrome-binding form. Journal of Biochemistry, 85, 1173–1181.  https://doi.org/10.1093/oxfordjournals.jbchem.a132441.Google Scholar
  14. 14.
    Matsushita, K., Shinagawa, E., & Ameyama, M. (1982). D-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods in Enzymology, 89, 187–193.  https://doi.org/10.1016/S0076-6879(82)89033-2.CrossRefGoogle Scholar
  15. 15.
    Toyama, H., Furuya, N., Saichana, I., Ano, Y., Adachi, O., & Matsushita, K. (2007). Membrane-bound, 2-keto-d-gluconate-yielding d-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: molecular properties and gene disruption. Applied and Environmental Microbiology, 73(20), 6551–6556.  https://doi.org/10.1128/AEM.00493-07.CrossRefGoogle Scholar
  16. 16.
    Shinagawa, E., Matsushita, K., Adachi, O., & Ameyama, M. (1984). d-Gluconate dehydrogenase, 2-keto-d-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agricultural and Biological Chemistry, 48(6), 1517–1522.  https://doi.org/10.1271/bbb1961.48.1517.Google Scholar
  17. 17.
    Shinagawa, E., Matsushita, K., Adachi, O., & Ameyama, M. (1978). Membrane-bound d-gluconate dehydrogenase of Serratia marcescens: purification and properties. Agricultural and Biological Chemistry, 42(12), 2355–2361.  https://doi.org/10.1080/00021369.1978.10863360.Google Scholar
  18. 18.
    Yum, D. Y., Lee, Y. P., & Pan, J. G. (1997). Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. Journal of Bacteriology, 179(21), 6566–6572.  https://doi.org/10.1128/jb.179.21.6566-6572.1997.CrossRefGoogle Scholar
  19. 19.
    Saichana, I., Moonmangmee, D., Adachi, O., Matsushita, K., & Toyama, H. (2009). Screening of thermotolerant Gluconobacter strains for production of 5-keto-d-gluconic acid and disruption of flavin adenine dinucleotide-containing d-gluconate dehydrogenase. Applied and Environmental Microbiology, 75(13), 4240–4247.  https://doi.org/10.1128/AEM.00640-09.CrossRefGoogle Scholar
  20. 20.
    Sun, W. J., Luan, F., Wang, D. M., Zhang, X. F., Cui, F. J., & Li, Y. Z. (2016). Cloning and bioinformatic analysis of a 2-ketogluconate transporter gene from Pseudomonas plecoglossicida. Modern Food Science and Technology, 50-55(in Chinese), 32.  https://doi.org/10.13982/j.mfst.1673-9078.2016.6.009.Google Scholar
  21. 21.
    Wang, D. M., Sun, L., Sun, W. J., Cui, F. J., Gong, J. S., Zhang, X. M., Shi, J. S., & Xu, Z. H. (2018). Purification, characterization and gene identification of a membrane-bound glucose dehydrogenase from 2-keto-d-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01. International Journal of Biological Macromolecules, 118, 534–541.  https://doi.org/10.1016/j.ijbiomac.2018.06.097.CrossRefGoogle Scholar
  22. 22.
    Kobayashi, K., Mustafa, G., Tagawa, S., & Yamada, M. (2005). Transient formation of a neutral ubisemiquinone radical and subsequent intramolecular electron transfer to pyrroloquinoline quinone in the Escherichia coli membrane-integrated glucose dehydrogenase. Biochemistry, 44(41), 13567–13572.  https://doi.org/10.1021/bi051347n.CrossRefGoogle Scholar
  23. 23.
    Sara-Paez, M., Contreras-Zentella, M., Gomez-Manzo, S., Gonzalez-Valdez, A. A., Gasca-Licea, R., Mendoza-Hernandez, G., Escamilla, J. E., & Reyes-Vivas, H. (2015). Purification and characterization of the membrane-bound quinoprotein glucose dehydrogenase of Gluconacetobacter diazotrophicus PAL 5. The Protein Journal, 34(1), 48–59.  https://doi.org/10.1007/s10930-014-9596-4.CrossRefGoogle Scholar
  24. 24.
    Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., Geer, L. Y., & Bryant, S. H. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203.  https://doi.org/10.1093/nar/gkw1129.CrossRefGoogle Scholar
  25. 25.
    Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4), 783–795.  https://doi.org/10.1016/j.jmb.2004.05.028.CrossRefGoogle Scholar
  26. 26.
    Chang, T. H., Huang, H. Y., Hsu, J. B., Weng, S. L., Horng, J. T., & Huang, H. D. (2013). An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 14(Suppl 2), S4–S8.  https://doi.org/10.1186/1471-2105-14-S2-S4.Google Scholar
  27. 27.
    Solovyev, V. S. A., & Salamov, A. (2011). Automatic annotation of microbial genomes and metagenomic sequences. in metagenomics and its applications in agriculture, biomedicine and environmental studies (Li, R.W., ed.), Nova Science Publishers, Hauppauge, NY, pp. 61–78.Google Scholar
  28. 28.
    Landete, J. M., Rodriguez, H., Curiel, J. A., de las Rivas, B., Mancheno, J. M., & Munoz, R. (2010). Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Journal of Industrial Microbiology & Biotechnology, 37(6), 617–624.  https://doi.org/10.1007/s10295-010-0709-6.CrossRefGoogle Scholar
  29. 29.
    Schmid, R. D., & Urlacher, V. B. (2007). Modern biooxidation: enzymes, reactions and applications. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
  30. 30.
    Shinagawaa, E., Matsushitab, K., Toyamab, H., & Adachib, O. (1999). Production of 5-keto-d-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound d-gluconate dehydrogenase. Journal of Molecular Catalysis B: Enzymatic, 6(3), 341–350.  https://doi.org/10.1016/S1381-1177(98)00112-X.CrossRefGoogle Scholar
  31. 31.
    Klasen, R., Bringer-Meyer, S., & Sahm, H. (1995). Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. Journal of Bacteriology, 177(10), 2637–2643.  https://doi.org/10.1128/jb.177.10.2637-2643.1995.CrossRefGoogle Scholar
  32. 32.
    Prakash, B., Vidyasagar, M., Jayalakshmi, S. K., & Sreeramulu, K. (2012). Purification and some properties of low-molecular-weight extreme halophilic xylanase from Chromohalobacter sp. TPSV 101. Journal of Molecular Catalysis B: Enzymatic, 74(3-4), 192–198.  https://doi.org/10.1016/j.molcatb.2011.10.004.CrossRefGoogle Scholar
  33. 33.
    Zhang, W., Yan, B., Wang, J., Yao, J., & Yu, Z. (2006). Purification and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter oxydans GO112. Enzyme and Microbial Technology, 38(5), 643–648.  https://doi.org/10.1016/j.enzmictec.2005.07.016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Da-Ming Wang
    • 1
    • 2
  • Lei Sun
    • 1
  • Wen-Jing Sun
    • 2
    • 3
    Email author
  • Feng-Jie Cui
    • 2
    • 3
  • Jin-Song Gong
    • 1
  • Xiao-Mei Zhang
    • 1
  • Jin-Song Shi
    • 1
  • Zheng-Hong Xu
    • 1
    Email author
  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Parchn Sodium Isovitamin C Co., Ltd.DexingPeople’s Republic of China
  3. 3.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations