Advertisement

Improved Thermal and Reusability Properties of Xylanase by Genipin Cross-Linking to Magnetic Chitosan Particles

  • Jorge Gracida
  • Teresita Arredondo-Ochoa
  • Blanca E. García-Almendárez
  • Monserrat Escamilla-García
  • Keiko Shirai
  • Carlos Regalado
  • Aldo Amaro-ReyesEmail author
Article
  • 74 Downloads

Abstract

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0 ± 0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

Keywords

Xylanase Immobilization Cross-linking Magnetic nanoparticles Chitosan 

Notes

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología, Mexico [CB-2014-241208].

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sorek, N., Yeats, T. H., Szemenyei, H., Youngs, H., & Somerville, C. R. (2014). The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience, 64(3), 192–201.  https://doi.org/10.1093/biosci/bit037.CrossRefGoogle Scholar
  2. 2.
    Saka, S., & Bae, H. J. (2016). Secondary xylem for bioconversion. In K. Yoon soo, F. Ryo, & P. S. Adya (Eds.), Secondary xylem biology: origins, functions, and applications (pp. 213–231). Academic Press.  https://doi.org/10.1016/B978-0-12-802185-9.00011-5.CrossRefGoogle Scholar
  3. 3.
    Dutta, S. K., & Chakraborty, S. (2015). Kinetic analysis of two-phase enzymatic hydrolysis of hemicellulose of xylan type. Bioresource Technology, 198, 642–650.  https://doi.org/10.1016/j.biortech.2015.09.066.CrossRefPubMedGoogle Scholar
  4. 4.
    Sukri, S. S. M., & Munaim, M. S. A. (2017). Combination of entrapment and covalent binding techniques for xylanase immobilisation on alginate beads: screening process parameters. Chemical Engineering Transactions, 56, 169–174.  https://doi.org/10.3303/CET1756029.CrossRefGoogle Scholar
  5. 5.
    Bibi, Z., Ansari, A., Zohra, R. R., Aman, A., & Ul Qader, S. A. (2014). Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. Journal of Radiation Research and Applied Sciences, 7(4), 478–485.  https://doi.org/10.1016/j.jrras.2014.08.001.CrossRefGoogle Scholar
  6. 6.
    Bhushan, B., Pal, A., & Jain, V. (2015). Improved enzyme catalytic characteristics upon glutaraldehyde cross-linking of alginate entrapped xylanase isolated from Aspergillus flavus MTCC 9390. Enzyme Research, 2015, 1–9.  https://doi.org/10.1155/2015/210784.CrossRefGoogle Scholar
  7. 7.
    Lyu, F., Zhang, Y., Zare, R. N., Ge, J., & Liu, Z. (2014). One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Letters, 14(10), 5761–5765.  https://doi.org/10.1021/nl5026419.CrossRefPubMedGoogle Scholar
  8. 8.
    Li, Z., Xia, H., Li, S., Pang, J., Zhu, W., & Jiang, Y. (2017). In situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale, 9(40), 15298–15302.  https://doi.org/10.1039/c7nr06315f.CrossRefPubMedGoogle Scholar
  9. 9.
    Xia, H., Zhong, X., Li, Z., & Jiang, Y. (2019). Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects. Journal of Colloid and Interface Science, 533, 1–8.  https://doi.org/10.1016/j.jcis.2018.08.052.CrossRefPubMedGoogle Scholar
  10. 10.
    Romo Sánchez, S., Gil Sánchez, I., Arévalo-Villena, M., & Briones Pérez, A. (2015). Production and immobilization of enzymes by solid-state fermentation of agroindustrial waste. Bioprocess and Biosystems Engineering, 38(3), 587–593.  https://doi.org/10.1007/s00449-014-1298-y.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaur, S., & Dhillon, G. S. (2014). The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Critical Reviews in Microbiology, 40(2), 155–175.  https://doi.org/10.3109/1040841X.2013.770385.CrossRefPubMedGoogle Scholar
  12. 12.
    Manickam, B., Sreedharan, R., & Elumalai, M. (2014). “Genipin”—the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Current Drug Delivery, 11(1), 139–145.  https://doi.org/10.2174/15672018113106660059.CrossRefPubMedGoogle Scholar
  13. 13.
    Klein, M. P., Hackenhaar, C. R., Lorenzoni, A. S. G., Rodrigues, R. C., Costa, T. M. H., Ninow, J. L., & Hertz, P. F. (2016). Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydrate Polymers, 137, 184–190.  https://doi.org/10.1016/j.carbpol.2015.10.069.CrossRefPubMedGoogle Scholar
  14. 14.
    Lau, Y. T., Kwok, L. F., Tam, K. W., Chan, Y. S., Shum, D. K. Y., & Shea, G. K. H. (2018). Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Colloids and Surfaces B: Biointerfaces, 162, 126–134.  https://doi.org/10.1016/j.colsurfb.2017.11.061.CrossRefPubMedGoogle Scholar
  15. 15.
    Pozzo L., d. Y., da Conceição, T. F., Spinelli, A., Scharnagl, N., & Pires, A. T. N. (2018). Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets. Carbohydrate Polymers, 181(September 2017), 71–77.  https://doi.org/10.1016/j.carbpol.2017.10.055.CrossRefGoogle Scholar
  16. 16.
    Oryan, A., Kamali, A., Moshiri, A., Baharvand, H., & Daemi, H. (2018). Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. International Journal of Biological Macromolecules, 107(PartA), 678–688.  https://doi.org/10.1016/j.ijbiomac.2017.08.184.CrossRefPubMedGoogle Scholar
  17. 17.
    Feng, J., Yu, S., Li, J., Mo, T., & Li, P. (2016). Enhancement of the catalytic activity and stability of immobilized aminoacylase using modified magnetic Fe3O4 nanoparticles. Chemical Engineering Journal, 286, 216–222.  https://doi.org/10.1016/j.cej.2015.10.083.CrossRefGoogle Scholar
  18. 18.
    Liu, M. Q., Dai, X. J., Guan, R. F., & Xu, X. (2014). Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catalysis Communications, 55, 6–10.  https://doi.org/10.1016/j.catcom.2014.06.002.CrossRefGoogle Scholar
  19. 19.
    Morales, M. A., De Souza Rodrigues, E. C., De Amorim, A. S. C. M., Soares, J. M., & Galembeck, F. (2013). Size selected synthesis of magnetite nanoparticles in chitosan matrix. Applied Surface Science, 275, 71–74.  https://doi.org/10.1016/j.apsusc.2013.01.123.CrossRefGoogle Scholar
  20. 20.
    Sheldon, R. A., & Van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(42), 6223–6235.  https://doi.org/10.1039/c3cs60075k.CrossRefPubMedGoogle Scholar
  21. 21.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.  https://doi.org/10.1021/ac60147a030.CrossRefGoogle Scholar
  22. 22.
    Length, F. (2011). Homologue expression of a fungal endo-1 , 4- -D- xylanase using submerged and solid substrate fermentations. Journal of Biotechnology, 10(10), 1760–1767.  https://doi.org/10.5897/AJB10.1952.CrossRefGoogle Scholar
  23. 23.
    Goluguri, B. R., Thulluri, C., Addepally, U., & Shetty, P. R. (2016). Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): purification and kinetic characterization. International Journal of Biological Macromolecules, 82, 823–829.  https://doi.org/10.1016/j.ijbiomac.2015.10.055.CrossRefPubMedGoogle Scholar
  24. 24.
    Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666.  https://doi.org/10.1021/ja01318a036.CrossRefGoogle Scholar
  25. 25.
    Tokareva, M. I., Ivantsova, M. N., & Mironov, M. A. (2017). Heterocycles of natural origin as non-toxic reagents for cross-linking of proteins and polysaccharides. Chemistry of Heterocyclic Compounds, 53(1), 21–35.  https://doi.org/10.1007/s10593-017-2016-x.CrossRefGoogle Scholar
  26. 26.
    Mehnati-Najafabadi, V., Taheri-Kafrani, A., & Bordbar, A.-K. (2017). Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: effect of PEGylation on activity and stability. International Journal of Biological Macromolecules., 107(Pt A), 418–425.  https://doi.org/10.1016/j.ijbiomac.2017.09.013.CrossRefPubMedGoogle Scholar
  27. 27.
    Shahrestani, H., Taheri-Kafrani, A., Soozanipour, A., & Tavakoli, O. (2016). Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochemical Engineering Journal, 109, 51–58.  https://doi.org/10.1016/j.bej.2015.12.013.CrossRefGoogle Scholar
  28. 28.
    Soozanipour, A., Taheri-Kafrani, A., & Landarani Isfahani, A. (2015). Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chemical Engineering Journal, 270, 235–243.  https://doi.org/10.1016/j.cej.2015.02.032.CrossRefGoogle Scholar
  29. 29.
    Selvarajan, E., & Veena, R. (2017). Recent advances and future perspectives of thermostable xylanase. Biomedical & Pharmacology Journal, 10(1), 261–279.  https://doi.org/10.13005/bpj/1106.CrossRefGoogle Scholar
  30. 30.
    Vaz, R. P., de Souza Moreira, L. R., & Ferreira Filho, E. X. (2016). An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. Journal of Molecular Catalysis B: Enzymatic, 133, 127–135.  https://doi.org/10.1016/j.molcatb.2016.08.006.CrossRefGoogle Scholar
  31. 31.
    Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220.  https://doi.org/10.1080/13102818.2015.1008192.CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar, S., Haq, I., Prakash, J., & Raj, A. (2017). Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. International Journal of Biological Macromolecules, 98, 24–33.  https://doi.org/10.1016/j.ijbiomac.2017.01.104.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, M. Q., Huo, W. K., Xu, X., & Jin, D. F. (2015). An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. Journal of Molecular Catalysis B: Enzymatic, 120, 119–126.  https://doi.org/10.1016/j.molcatb.2015.07.002.CrossRefGoogle Scholar
  34. 34.
    Hou, L., Sun, X., Sui, J., & Ding, C. (2015). Immobilization of a 22kDa xylanase on Eudragit L-100 for xylo-oligosaccharide production. Advance Journal of Food Science and Technology, 7(6), 401–407.  https://doi.org/10.19026/ajfst.7.1332.CrossRefGoogle Scholar
  35. 35.
    Bagewadi, Z. K., Mulla, S. I., Shouche, Y., & Ninnekar, H. Z. (2016). Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech, 6(2), 1–18.  https://doi.org/10.1007/s13205-016-0484-9.CrossRefGoogle Scholar
  36. 36.
    Chen, J., Leng, J., Yang, X., Liao, L., Liu, L., & Xiao, A. (2017). Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules, 22(2), 221.  https://doi.org/10.3390/molecules22020221.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., & Orfali, W. (2017). Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochemical Engineering Journal, 121, 94–106.  https://doi.org/10.1016/j.bej.2017.02.003.CrossRefGoogle Scholar
  38. 38.
    Pati, S. S., Singh, L. H., Guimaraes, E. M., Mantilla, J., Coaquira, J. A. H., Oliveira, A. C., et al. (2016). Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: synthesis and characterization. Journal of Alloys and Compounds, 684, 68–74.  https://doi.org/10.1016/j.jallcom.2016.05.160.CrossRefGoogle Scholar
  39. 39.
    Prabha, G., & Raj, V. (2016). Preparation and characterization of chitosan-polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 104(4), 808–816.  https://doi.org/10.1002/jbm.b.33637.CrossRefGoogle Scholar
  40. 40.
    Saikia, C., Das, M. K., Ramteke, A., & Maji, T. K. (2016). Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. International Journal of Biological Macromolecules, 93(Pt A), 1121–1132.  https://doi.org/10.1016/j.ijbiomac.2016.09.043.CrossRefPubMedGoogle Scholar
  41. 41.
    Bhattacharya, A., & Pletschke, B. I. (2014). Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme and Microbial Technology, 61–62, 17–27.  https://doi.org/10.1016/j.enzmictec.2014.04.009.CrossRefPubMedGoogle Scholar
  42. 42.
    Jia, L., Budinova, G. A. L. G., Takasugi, Y., Noda, S., Tanaka, T., Ichinose, H., Goto, M., & Kamiya, N. (2016). Synergistic degradation of arabinoxylan by free and immobilized xylanases and arabinofuranosidase. Biochemical Engineering Journal, 114, 268–275.  https://doi.org/10.1016/j.bej.2016.07.013.CrossRefGoogle Scholar
  43. 43.
    Waifalkar, P. P., Parit, S. B., Chougale, A. D., Sahoo, S. C., Patil, P. S., & Patil, P. B. (2016). Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. Journal of Colloid and Interface Science, 482, 159–164.  https://doi.org/10.1016/j.jcis.2016.07.082.CrossRefPubMedGoogle Scholar
  44. 44.
    Li, L., Li, G., Cao, L. C., Ren, G. H., Kong, W., Di Wang, S., et al. (2015). Characterization of the cross-linked enzyme aggregates of a novel β-galactosidase, a potential catalyst for the synthesis of galacto-oligosaccharides. Journal of Agricultural and Food Chemistry, 63(3), 894–901.  https://doi.org/10.1021/jf504473k.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Autónoma de Querétaro, Centro UniversitarioQuerétaroMexico
  2. 2.DIPA, PROPAC, Facultad de QuímicaUniversidad Autónoma de Querétaro, Centro UniversitarioQuerétaroMexico
  3. 3.Departmento de BiotecnologíaUniversidad Autonoma MetropolitanaMexico CityMexico

Personalised recommendations