Advertisement

Synthesis of Fucose-Containing Disaccharides by Glycosylhydrolases from Various Origins

  • Sergio Alatorre-Santamaría
  • Yolanda Escamilla-Lozano
  • Francisco Guzmán-Rodríguez
  • Mariano García-Garibay
  • Gabriela Rodríguez-Serrano
  • Lorena Gómez-Ruiz
  • Alma Cruz-GuerreroEmail author
Article

Abstract

Glycosylhydrolases of various origins were used to produce fucose-containing disaccharides with prebiotic potential using different donor substrates and l-fucose as the acceptor substrate. Eight different disaccharides were synthesized as follows: three β-d-galactosyl-l-fucosides with glycosidase CloneZyme Gly-001-02 using d-lactose as a donor substrate, two with a structure similar to prebiotics; one β-d-galactosyl-l-fucose with β-d-galactosidase from Aspergillus oryzae using d-lactose as a substrate donor; and four α-d-glucosyl-l-fucosides with α-d-glucosidase from Saccharomyces cerevisiae using d-maltose as a donor substrate. All disaccharides were purified and hydrolyzed. In all cases, an l-fucose moiety was present, and it was confirmed for β-d-galactosyl-l-fucose by mass spectrometry. High concentrations of l-fucose as the acceptor substrate enhanced the synthesis of the oligosaccharides in all cases. The three enzymes were able to synthesize fucose-containing disaccharides when l-fucose was used as the acceptor substrate, and the highest yield was 20% using β-d-galactosidase from Aspergillus oryzae.

Keywords

Glycosylhydrolases Fucose-containing disaccharides Disaccharides synthesis Transglycosylation 

Notes

Funding Information

This work was supported by the National Council for Science and Technology (Mexico) (grant number 180438).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sandoval, M., Ferreras, E., Pérez-Sánchez, M., Berenguer, J., Sinisterra, J. V., & Hernaiz, M. J. (2012). Screening of strains and recombinant enzymes from Thermus thermophilus for their use in disaccharide synthesis. Journal of Molecular Catalysis B: Enzymatic, 74(3-4), 162–169.CrossRefGoogle Scholar
  2. 2.
    Zeuner, B., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2014). Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry, 62(40), 9615–9631.CrossRefGoogle Scholar
  3. 3.
    Giacomini, C., Irazoqui, G., González, P., Batista-Viera, F., & Brena, B. M. (2002). Enzymatic synthesis of galactosyl–xylose by Aspergillus oryzae β-galactosidase. Journal of Molecular Catalysis B: Enzymatic, 20, 159–165.CrossRefGoogle Scholar
  4. 4.
    Miyasato, M., & Ajisaka, K. (2004). Regioselectivity in β-galactosidase-catalyzed transglycosylation for the enzymatic assembly of D-galactosyl-D-mannose. Bioscience Biotechnology and Biochemistry, 68(10), 2086–2090.CrossRefGoogle Scholar
  5. 5.
    Cruz-Guerrero, A. E., Gomez-Ruiz, L., Viniegra-Gonzalez, G., Barzana, E., & Garcia-Garibay, M. (2006). Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic beta-glycosidase in an organic medium. Biotechnology and Bioengineering, 93(6), 1123–1129.CrossRefGoogle Scholar
  6. 6.
    Huerta, L. M., Vera, C., Guerrero, C., Wilson, L., & Illanes, A. (2011). Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 46(1), 245–252.CrossRefGoogle Scholar
  7. 7.
    Lu, L., Xu, S., Jin, L., Zhang, D., Li, Y., & Xiao, M. (2012). Synthesis of galactosyl sucralose by Lactobacillus bulgaricus L3. Food Chemistry, 134(1), 269–275.CrossRefGoogle Scholar
  8. 8.
    Rodríguez-Díaz, J., Carbajo, R. J., Pineda-Lucena, A., Monedero, V., & Yebra, M. J. (2013). Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using α-L-fucosidases from Lactobacillus casei. Applied Environmental Microbiology, 79(12), 3847–3850.CrossRefGoogle Scholar
  9. 9.
    Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B., & Newburg, D. S. (2003). Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. Journal of Biological Chemistry, 278(16), 14112–14120.CrossRefGoogle Scholar
  10. 10.
    Holemann, A., & Seeberger, P. (2004). Carbohydrate diversity: synthesis of glycoconjugates and complex carbohydrates. Current Opinion in Biotechnology, 15(6), 615–622.CrossRefGoogle Scholar
  11. 11.
    Osanjo, G., Dion, M., Drone, J., Solleux, C., Tran, V., Rabiller, C., & Tellier, C. (2007). Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase. Biochemistry, 46(4), 1022–1033.CrossRefGoogle Scholar
  12. 12.
    Ajisaka, K., & Yamamoto, Y. (2002). Control of the regioselectivity in the enzymatic syntheses of oligosaccharides using glycosidases. Trends in Glycoscience and Glycotechnology, 14(75), 1–11.CrossRefGoogle Scholar
  13. 13.
    Mikkelson, A., Maaheimo, H., & Hakala, T. K. (2013). Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydrate Research, 372, 60–68.CrossRefGoogle Scholar
  14. 14.
    Usvalampi, A., Maaheimo, H., Tossavainen, O., & Frey, A. D. (2017). Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconjugate Journal, 35, 31–40.CrossRefGoogle Scholar
  15. 15.
    Guzmán-Rodríguez, F., Alatorre-Santamaría, S., Gómez Ruiz, L., Rodríguez-Serrano, G., García-Garibay, M., & Cruz-Guerrero, A. (2018). Synthesis of a fucosylated trisaccharide via transglycosylation by α-L-fucosidase from Thermotoga maritima. Applied Biochemistry and Biotechnology, 186(3), 681–691.CrossRefGoogle Scholar
  16. 16.
    Fernández-Arrojo, L., Marín, D., Gómez de Segura, A., Linde, D., Alcalde, M., Gutiérrez-Alonso, P., Ghazi, I., Plou, F. J., Fernández-Lobato, M., & Ballesteros, A. (2007). Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochemistry, 42(11), 1530–1536.CrossRefGoogle Scholar
  17. 17.
    Nimpiboon, P., Nakapong, S., Pichyangkura, R., Ito, K., & Pongsawasdi, P. (2011). Synthesis of a novel prebiotic trisaccharide by a type I α-glucosidase from B. licheniformis strain TH4-2O. Process Biochemistry, 46(2), 448–457.CrossRefGoogle Scholar
  18. 18.
    Domínguez-Vergara, A., Vázquez-Moreno, L., & Ramos-Clamont, G. (2009). Revisión del papel de los oligosacáridos prebióticos en la prevención de infecciones gastrointestinales [Review of the role of prebiotic oligosaccharides in the prevention of gastrointestinal infections]. Archivos Latinoamericanos de Nutrición, 59(4), 358–368.PubMedGoogle Scholar
  19. 19.
    Weichert, S., Jennewein, S., Hüfner, E., Weiss, C., Borkowski, J., Putze, J., & Schroten, H. (2013). Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutrition Research, 33(10), 831–838.CrossRefGoogle Scholar
  20. 20.
    Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sergio Alatorre-Santamaría
    • 1
  • Yolanda Escamilla-Lozano
    • 1
  • Francisco Guzmán-Rodríguez
    • 1
  • Mariano García-Garibay
    • 1
    • 2
  • Gabriela Rodríguez-Serrano
    • 1
  • Lorena Gómez-Ruiz
    • 1
  • Alma Cruz-Guerrero
    • 1
    Email author return OK on get
  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaMéxico D.F.México
  2. 2.Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la SaludUniversidad Autónoma MetropolitanaLerma de VilladaMéxico

Personalised recommendations