Advertisement

Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number

  • Mingyang Jiang
  • Guochao Xu
  • Jie Ni
  • Kai Zhang
  • Jinjun Dong
  • Ruizhi Han
  • Ye Ni
Article
  • 22 Downloads

Abstract

The soluble expression of tyrosine decarboxylase (TDC) in heterologous host is often challenging. Here, acidic condition was found to be favorable for improving the soluble expression of TDC from Lactobacillus brevis in Escherichia coli, while addition of carbohydrates (such as glucose, arabinose, and fructose) was vital for decreasing the insoluble fraction. By simple pH control and addition of glucose, the specific activity of TDC in crude extract was enhanced to 46.3 U mg−1, 3.67-fold of that produced from LB medium. Optimization of the reaction conditions revealed that Tween-80 was effective in improving the tyramine production catalyzed by TDC, especially at high tyrosine loadings. As much as 400 mM tyrosine could be completely converted into tyramine with a substrate to catalyst ratio of 29.0 g g−1 and total turnover number of 23,300. This study provides efficient strategies for the highly soluble expression of TDC and biocatalytic production of tyramine.

Keywords

Soluble expression Tyrosine decarboxylase Tyramine Glucose Tween-80 

Notes

Funding Information

The study was financially supported by the National Natural Science Foundation of China (21506073, 21776112), the Natural Science Foundation of Jiangsu Province (BK20150003, BK20171135), six talent peaks project of Jiangsu Province (2015-SWYY-008), national first-class discipline program of Light Industry Technology and Engineering (LITE2018-07), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2018_2925_MOESM1_ESM.docx (11.2 mb)
ESM 1 (DOCX 11450 kb)

References

  1. 1.
    Nishimaki-Mogami, T., Suzuki, K., Okochi, E., & Takahashi, A. (1996). Bezafibrate and clofibric acid are novel inhibitors of phosphatidylcholine synthesis via the methylation of phosphatidylethanolamine. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1304(1), 11–20.  https://doi.org/10.1016/S0005-2760(96)00101-4.CrossRefGoogle Scholar
  2. 2.
    Forman, B. M., Chen, J., & Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proceedings of the National Academy of Sciences, 94(9), 4312–4317.CrossRefGoogle Scholar
  3. 3.
    Zhu, Z. T., Munhall, A. C., & Johnson, S. W. (2007). Tyramine excites rat subthalamic neurons in vitro by a dopamine-dependent mechanism. Neuropharmacology, 52(4), 1169–1178.  https://doi.org/10.1016/j.neuropharm.2006.12.005.CrossRefGoogle Scholar
  4. 4.
    Lee, K., Kang, K., Park, M., Park, S., & Back, K. (2009). Enhanced octopamine synthesis through the ectopic expression of tyrosine decarboxylase in rice plants. Plant Science, 176(1), 46–50.  https://doi.org/10.1016/j.plantsci.2008.09.006.CrossRefGoogle Scholar
  5. 5.
    Roeder, T., Seifert, M., Kahler, C., & Gewecke, M. (2003). Tyramine and octopamine: Antagonistic modulators of behavior and metabolism. Archives of Insect Biochemistry and Physiology, 54(1), 1–13.  https://doi.org/10.1002/arch.10102.CrossRefGoogle Scholar
  6. 6.
    Molaei, G., Paluzzi, J. P., Bendena, W. G., & Lange, A. B. (2005). Isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from locust visceral muscle tissues. Archives of Insect Biochemistry and Physiology, 59(3), 132–149.  https://doi.org/10.1002/arch.20067.CrossRefGoogle Scholar
  7. 7.
    Stohs, S. J. (2011). Synephrine: From trace concentrations to massive consumption in weight-loss. Food and Chemical Toxicology, 49(1), 1472–1473.  https://doi.org/10.1016/j.fct.2011.03.035.CrossRefGoogle Scholar
  8. 8.
    Mao, G. X., Deng, H. B., Yuan, L. G., Li, D. D., Li, Y. Y., & Wang, Z. (2010). Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomedical and Environmental Sciences, 23(2), 161–166.  https://doi.org/10.1016/S0895-3988(10)60047-5.CrossRefGoogle Scholar
  9. 9.
    Ouyang, J. F., Lou, J., Yan, C., Ren, Z. H., & Qiao, H. X. (2010). In-vitro promoted differentiation of mesenchymal stem cells towards hepatocytes induced by salidroside. Journal of Pharmacy and Pharmacology, 62(4), 530–538.  https://doi.org/10.1211/jpp.62.04.0017.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Yang, F., Xu, X., Pan, S., Wang, L., & Xia, C. Q. (2009). Improved preparation of tyramine by curtius rearrangement. Chinese Journal of Chemistry, 27(2), 433–436.  https://doi.org/10.1002/cjoc.200990072.CrossRefGoogle Scholar
  11. 11.
    Kirk, K. L. (1976). Photochemistry of diazonium salts. 4. Synthesis of ring-fluorinated tyramines and dopamines. Journal of Organic Chemistry, 41(14), 2373–2376.  https://doi.org/10.1021/jo00876a004.CrossRefGoogle Scholar
  12. 12.
    Buck, J. S. (1933). Reduction of hydroxy mandelonitrile. A new synthesis of tyramine. Journal of American Chemical Society, 55(8), 3388–3390.  https://doi.org/10.1021/ja01335a058.CrossRefGoogle Scholar
  13. 13.
    Wang, Y., & Xie, D. (1994). An improved synthetic method of tyramine. Chinese Journal of Medical Chemistry, 4, 128–129.Google Scholar
  14. 14.
    Shimizu, Y., Morimoto, H., Zhang, M., & Ohshima, T. (2012). Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation. Angewandte Chemie International Edition, 51(34), 8564–8567.  https://doi.org/10.1002/anie.201202354.CrossRefGoogle Scholar
  15. 15.
    Sandmeier, E., Hale, T. I., & Christen, P. (1994). Multiple evolutionary origin of pyridoxal-5-phosphate-dependent amino acid decarboxylases. European Journal of Biochemistry, 221(3), 997–1002.  https://doi.org/10.1111/j.1432-1033.1994.tb18816.x.CrossRefGoogle Scholar
  16. 16.
    Facchini, P. J., & De Luca, V. (1995). Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry, 38(5), 1119–1126.  https://doi.org/10.1016/0031-9422(94)00814-A.CrossRefGoogle Scholar
  17. 17.
    El-Ahmady, S. H., & Nessler, C. L. (2001). Cellular localization of tyrosine decarboxylase expression in transgenic opium poppy and tobacco. Plant Cell Reports, 20(4), 313–317.  https://doi.org/10.1007/s002990100331.CrossRefGoogle Scholar
  18. 18.
    Ma, L. Q., Gao, D. Y., Wang, Y. N., Wang, H. H., Zhang, J. X., Pang, X. B., Hu, T. S., Lu, S. Y., Li, G. F., Ye, H. C., Li, Y. F., & Wang, H. (2008). Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. Plant Biology, 10(3), 323–333.  https://doi.org/10.1111/j.1438-8677.2007.00024.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang, J. X., Ma, L. Q., Yu, H. S., Zhang, H., Wang, H. T., Qin, Y. F., Shi, G. L., & Wang, Y. N. (2011). A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. Plant Cell Reports, 30(8), 1443–1453.  https://doi.org/10.1007/s00299-011-1053-7.CrossRefGoogle Scholar
  20. 20.
    Ishida, Y., & Ozaki, M. (2012). Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina. Naturwissenschaften, 99(1), 71–75.  https://doi.org/10.1007/s00114-011-0865-1.CrossRefGoogle Scholar
  21. 21.
    Kezmarsky, N. D., Xu, H., Graham, D. E., & White, R. H. (2005). Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii. Biochimica et Biophysica Acta, 1722(2), 175–182.  https://doi.org/10.1016/j.bbagen.2004.12.003.CrossRefGoogle Scholar
  22. 22.
    Borresen, T., Klausen, N. K., Larsen, L. M., & Sørensen, H. (1989). Purification and characterisation of tyrosine decarboxylase and aromatic-L-amino-acid decarboxylase. Biochimica et Biophysica Acta, 993(1), 108–115.  https://doi.org/10.1016/0304-4165(89)90149-9.CrossRefGoogle Scholar
  23. 23.
    Lucas, P., & Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211(1), 85–89.  https://doi.org/10.1111/j.1574-6968.2002.tb11207.x.CrossRefGoogle Scholar
  24. 24.
    Moreno-Arribas, V., & Lonvaud-Funel, A. (2001). Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiology Letters, 195(1), 103–107.  https://doi.org/10.1111/j.1574-6968.2001.tb10505.x.CrossRefGoogle Scholar
  25. 25.
    Darbinyan, V., Aslanyan, G., Amroyan, E., Gabrielyan, E., Malmström, C., & Panossian, A. (2007). Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nordic Journal of Psychiatry, 61(5), 343–348.  https://doi.org/10.1080/08039480701643290.CrossRefGoogle Scholar
  26. 26.
    Zhang, K., & Ni, Y. (2014). Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization. Protein Expression and Purification, 94, 33–39.  https://doi.org/10.1016/j.pep.2013.10.018.CrossRefGoogle Scholar
  27. 27.
    Nomura, M., Kobayashi, M., & Ohmomo, S. (2000). Inactivation of the glutamate decarboxylase gene Lactococcus lactis subsp. cremoris. Applied Environmental Microbiology, 66(5), 2235–2237.  https://doi.org/10.1128/AEM.66.5.2235-2237.2000.CrossRefGoogle Scholar
  28. 28.
    Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408.  https://doi.org/10.1038/nbt1029.CrossRefGoogle Scholar
  29. 29.
    de Marco, A., Deuerling, E., Mogk, A., Tomoyasu, T., & Bukau, B. (2007). Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnology, 7(1), 32–40.  https://doi.org/10.1186/1472-6750-7-32.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Zhang, H. J., Wei, Y., Lu, Y., Wu, S. P., Liu, Q., Liu, J. Z., & Jiao, Q. C. (2016). Three-step biocatalytic reaction using whole cells for efficient production of tyramine from keratin acid hydrolysis wastewater. Applied Microbiology and Biotechnology, 100(4), 1691–1700.  https://doi.org/10.1007/s00253-015-7054-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA

Personalised recommendations