Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 297–309 | Cite as

Enhanced Production of 6-(N-Hydroxyethyl)-Amino-6-Deoxy-α-L-Sorbofuranose by Immobilized Gluconobacter oxydanson Corn Stover with a pH Control Strategy in a Bubble Column Bioreactor

  • Zhong-Ce Hu
  • Jia-Li Bu
  • Ru-Yi Wang
  • Xia Ke
  • Yu-Guo ZhengEmail author


6-(N-Hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose (6NSL) is a key intermediate in the synthesis of miglitol. Biotransformation of N-2-hydroxyethyl glucamine (NHEG) to 6NSL was performed by immobilized Gluconobacter oxydans, which was prepared by cultivating the cells in a home-made bubble column bioreactor where corn stover particles were loaded. The optimal carrier addition and aeration rate for 6NSL production by immobilized cells in the bioreactor were determined to be 25 g/L and 2.5 vvm respectively. The supplementation of NH4Cl was conducive to the biotransformation of NHEG and was performed by adding aqueous ammonia and HCl, which was taken as the pH controlling agents as well. An optimal pH control strategy using the mixture of aqueous ammonia and NaOH was applied, resulting in a 9.9% increased production of 6NSL, while repeated batches of biotransformation increased from three times to four times. Finally, the 6NSL concentration and the conversion rate of NHEG to 6NSLreached 44.2 ± 1.5 g/L and 88.4 ± 2.0%, respectively, in average after four cycles of biotransformation under the optimized condition.


6-(N-Hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose Gluconobacter oxydans Cell immobilization Corn stover Biotransformation 


Funding Information

This study was funded by the National Major Project of Scientific Instruments Development of China (2012YQ15008713), granted from the Ministry of Science and Technology of PR China.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Scott, L. J., & Spencer, C. M. (2000). Miglitol - a review of its therapeutic potential in type 2 diabetes mellitus. Drugs, 59(3), 521–549.CrossRefPubMedGoogle Scholar
  2. 2.
    Grabner RoyW., Bryan H.Landis, Ping TuWang, Michael Lee Prunier and Scaros, M. G. (1999) Salt forms of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose. US Patent 6552176B2.Google Scholar
  3. 3.
    GrabnerRoy W., Bryan H.Landis, Mike G.Scaros and Rutter, R. J. (1992) Process for producing N-Substituted polyhydroxy nitrogen-containing heterocycles utilizing Acetobacteraceae and Corynebacterium. US Patent 5401645.Google Scholar
  4. 4.
    Ke, X., Wang, N. N., Yu, P. H., Lu, Y. H., Hu, Z. C., & Zheng, Y. G. (2018). Biosynthesis of miglitol intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-alpha-L-sorbofuranose by an improved D-sorbitol dehydrogenase from Gluconobacter oxydans. 3 Biotech, 8(5), 231.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hu, Z. C., Tian, S. Y., Ruan, L. J., & Zheng, Y. G. (2017). Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Bioresource Technology, 233, 144–149.CrossRefPubMedGoogle Scholar
  6. 6.
    Wei, L. J., Zhou, J. L., Zhu, D. N., Cai, B. Y., Lin, J. P., Hua, Q., & Wei, D. Z. (2012). Functions of membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase in the bio-oxidation of alcohols in Gluconobacter oxydans DSM 2003. Biotechnology and Bioprocess Engineering, 17(6), 1156–1164.CrossRefGoogle Scholar
  7. 7.
    Zhou, X., Xu, Y., & Yu, S. Y. (2016). Simultaneous bioconversion of xylose and glycerol to xylonic acid and 1,3-dihydroxyacetone from the mixture of pre-hydrolysates and ethanol-fermented waste liquid by Gluconobacter oxydans. Applied Biochemistry and Biotechnology, 178(1), 1–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu, J. J., Rong, Y. Y., Yang, J. L., Zhou, X., Xu, Y., Zhang, L. L., Chen, J. H., Yong, Q., & Yu, S. Y. (2015). Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology, 176(5), 1370–1381.CrossRefPubMedGoogle Scholar
  9. 9.
    Hanke, T., Richhardt, J., Polen, T., Sahm, H., Bringer, S., & Bott, M. (2012). Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. Journal of Biotechnology, 157(3), 359–372.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang, X. P., Wei, L. J., Lin, J. P., Yin, B., & Wei, D. Z. (2008). Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Applied and Environmental Microbiology, 74(16), 5250–5253.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu, Z. C., & Zheng, Y. G. (2011). Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Applied Biochemistry and Biotechnology, 165(5–6), 1152–1160.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang, D. H. (2010) Breeding of high-activity sorbitol dehydrogenase in Gluconobacter oxydans and biocatalatic-chemical synthesis of miglitol. PhD thesis, Northwest University, Xi’an, CHN.Google Scholar
  13. 13.
    Su, W. W., Wu, X. G., Chen, D. J., & Xia, H. Z. (2007). Biotransformation of 6-(N-hydroxyethyl)amino-6-deoxy-L-sorbofuranose by immobilized Gluconobacter oxydans. Journal of Shenyang Pharmaceutical University, 24(2), 118–122.Google Scholar
  14. 14.
    Zhang, J. B., Zhang, X. L., Wang, D. H., Zhao, B. X., & He, G. (2011). Biocatalytic regioselective oxidation of N-hydroxyethyl glucamine for synthesis of miglitol. Advanced Materials Research, 197-198(21), 51–55.Google Scholar
  15. 15.
    Wei, S. H., Song, Q. X., & Wei, D. Z. (2007). Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Preparative Biochemistry & Biotechnology, 37(1), 67–76.CrossRefGoogle Scholar
  16. 16.
    Li, M. H., Wu, J. A., Liu, X., Lin, J. P., Wei, D. Z., & Chen, H. (2010). Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresource Technology, 101(21), 8294–8299.CrossRefPubMedGoogle Scholar
  17. 17.
    Poljungreed, I., & Boonyarattanakalin, S. (2018). Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only. Letters in Applied Microbiology, 67(1), 39–46.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang, X., Liu, J., Du, G., Zhou, J., & Chen, J. (2013). Efficient production of l -sorbose from d -sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 77(16), 171–176.CrossRefGoogle Scholar
  19. 19.
    Chang, Z., Cai, D., Wang, C. Y., Li, L., Han, J. C., Qin, P. Y., & Wang, Z. (2014). Sweet sorghum bagasse as an immobilized carrier for ABE fermentation by using Clostridium acetobutylicum ABE 1201. RSC Advances, 4(42), 21819–21825.CrossRefGoogle Scholar
  20. 20.
    Yu, J. L., Yue, G. J., Zhong, J., Zhang, X., & Tan, T. W. (2010). Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production. Renewable Energy, 35(6), 1130–1134.CrossRefGoogle Scholar
  21. 21.
    Cai, D., Li, P., Chen, C., Wang, Y., Hu, S., Cui, C., Qin, P., & Tan, T. (2016). Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system. Bioresource Technology, 220, 68–75.CrossRefPubMedGoogle Scholar
  22. 22.
    Li, L., Cai, D., Wang, C., Han, J., Ren, W., Zheng, J., Wang, Z., & Tan, T. (2015). Continuous L-lactic acid production from defatted rice bran hydrolysate using corn stover bagasse immobilized carrier. RSC Advances, 5(24), 18511–18517.CrossRefGoogle Scholar
  23. 23.
    Wang, S. J., Ma, Z. H., & Su, H. J. (2018). Two-step continuous hydrogen production by immobilized mixed culture on corn stalk. Renewable Energy, 121, 230–235.CrossRefGoogle Scholar
  24. 24.
    Yan, S. B., Chen, X. S., Wu, J. Y., & Wang, P. C. (2012). Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Applied Microbiology & Biotechnology, 94(3), 829–838.CrossRefGoogle Scholar
  25. 25.
    Gallazzi, A., Branska, B., Marinelli, F., & Patakova, P. (2015). Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. Journal of Biotechnology, 216, 29–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu, C., Wang, X., Lin, F., Zhang, H. Y., & Xiao, R. (2018). Structural elucidation of industrial bioethanol residual lignin from corn stalk: a potential source of vinyl phenolics. Fuel Processing Technology, 169, 50–57.CrossRefGoogle Scholar
  27. 27.
    Onyeaka, H., Nienow, A. W., & Hewitt, C. J. (2003). Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentations: the additional effect of a changing microenvironment when using aqueous ammonia to control pH. Biotechnology and Bioengineering, 84(4), 474–484.CrossRefPubMedGoogle Scholar
  28. 28.
    Deppenmeier, U., & Ehrenreich, A. (2009). Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16(1–2), 69–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Landis, B. H., Mclaughlin, J. K., Heeren, R., And, R. W. G., & Wang, P. T. (2002). Bioconversion of N-butylglucamine to 6-Deoxy-6-butylamino sorbose by Gluconobacter oxydans. Organic Process Research & Development, 6(4), 547–552.CrossRefGoogle Scholar
  30. 30.
    Claret, C., Salmon, J. M., Romieu, C., & Bories, A. (1994). Physiology of Gluconabacter oxydans during dihydroxyacetone production from glycerol. Applied Microbiology and Biotechnology, 41(3), 359–365.CrossRefGoogle Scholar
  31. 31.
    Mcclure, D. D., Aboudha, N., Kavanagh, J. M., Fletcher, D. F., & Barton, G. W. (2015). Mixing in bubble column reactors: experimental study and CFD modeling. Chemical Engineering Journal, 264, 291–301.CrossRefGoogle Scholar
  32. 32.
    Özcan, E., Sargın, S., & Göksungur, Y. (2014). Comparison of pullulan production performances of air-lift and bubble column bioreactors and optimization of process parameters in air-lift bioreactor. Biochemical Engineering Journal, 92, 9–15.CrossRefGoogle Scholar
  33. 33.
    Hu, Z. C., Zheng, Y. G., & Shen, Y. C. (2011). Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Bioresource Technology, 102(14), 7177–7182.CrossRefPubMedGoogle Scholar
  34. 34.
    Geißler, T., Abánades, A., Heinzel, A., Mehravaran, K., Müller, G., Rathnam, R. K., Rubbia, C., Salmieri, D., Stoppel, L., & Stückrad, S. (2016). Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chemical Engineering Journal, 299, 192–200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations