Enhanced Therapeutic Potency of Nanoemulsified Garlic Oil Blend Towards Renal Abnormalities in Pre-diabetic Rats

  • Muralidaran Yuvashree
  • Ragavan Gokulakannan
  • Rajesh Nachiappa Ganesh
  • Pragasam ViswanathanEmail author


The therapeutic potency of ultrasonic nanoemulsified garlic oil blend using a non-ionic surfactant (Tween 80) was assessed on pre-diabetic Wistar rats with microalbuminuria. The pre-diabetic condition was induced in male albino Wistar rats by supplementing high-fat diet. The prolonged period of the pre-diabetic state caused renal dysfunctioning, which was indicated by microalbuminuria. Treatment of pre-diabetic rats with nanoemulsified garlic oil blend significantly ameliorated the lipid profile (p < 0.001), urinary albumin (p < 0.01), microprotein (p < 0.001), urinary triglycerides (p < 0.01), serum triglycerides (p < 0.01), serum albumin (p < 0.05), and protein levels (p < 0.01) in comparison to treatment of pre-diabetic rats with garlic oil blend or atorvastatin. Similarly, histopathological investigations indicated a remarkable attenuation in the mesangial expansion and proliferation, glomerular and tubular basement membrane thickening, and the tubular lipid deposits on administering nanoemulsified garlic oil blend than garlic oil blend or atorvastatin. Moreover, nanoemulsified garlic oil blend significantly promoted renal podocin gene expression by 3.98-fold (p < 0.001) and attenuated increased urinary podocin level by 2.92-fold (p < 0.01). Thus, our study affirms that the efficacy of garlic oil blend was augmented upon nanoemulsification, which substantially ameliorated the renal abnormalities observed in the pre-diabetic condition than garlic oil blend or atorvastatin.


Garlic oil blend Nanoemulsion Pre-diabetes Microalbuminuria Renal podocin Urinary podocin 



The authors are thankful to the Council of Scientific and Industrial Research (09/844(0038)/2016 EMR-I) for funding aid and VIT, Vellore, for providing the research amenities.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2919_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 12 kb)


  1. 1.
    Park, H. J., Cho, J. Y., Kim, M. K., Koh, P. O., Cho, K. W., Kim, C. H., Lee, K. S., Chung, B. Y., Kim, G. S., & Cho, J. H. (2012). Anti-obesity effect of Schisandra chinensis in 3T3-L1 cells and high fat diet-induced obese rats. Food Chemistry, 134(1), 227–234.CrossRefGoogle Scholar
  2. 2.
    Bhattacharya, P. K., & Iqbal, A. (2016). Evaluation of risk of type 2 diabetes mellitus and prediabetes in students of health institutions in a northeast Indian city. IJMS., 7(1), 3–8.Google Scholar
  3. 3.
    Hunley, T. E., Ma, L. J., & Kon, V. (2010). Scope and mechanisms of obesity-related renal disease. Current Opinion in Nephrology and Hypertension, 19(3), 227–234.CrossRefGoogle Scholar
  4. 4.
    Krolewski, A. S., Niewczas, M. A., Skupien, J., Gohda, T., Smiles, A., Eckfeldt, J. H., Doria, A., & Warram, J. H. (2014). Early progressive renal decline preceded the onset of microalbuminuria and its progression to macroalbuminuria. Diab care, 37(1), 226–234.CrossRefGoogle Scholar
  5. 5.
    Kikuchi, M., Wickman, L., Rabah, R., & Wiggins, R. C. (2016). Podocyte number and density changes during early human life. Pediatric Nephrology, 32(5), 823–834.CrossRefGoogle Scholar
  6. 6.
    Qi, X. M., Wang, J., Xu, X. X., Li, Y. Y., & Wu, Y. G. (2016). FK506 reduces albuminuria through improving podocyte nephrin and podocin expression in diabetic rats. Inflammation Research, 65(2), 103–114.CrossRefGoogle Scholar
  7. 7.
    Toit, E.F.D., Donner, D.G. (2012). Myocardial insulin resistance: an overview of its causes, effects, and potential therapy, insulin resistance. Dr. Sarika Arora (Ed.), InTech.Google Scholar
  8. 8.
    Qatanani, M., & Lazar, M. A. (2007). Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Development, 21(12), 1443–1455.CrossRefGoogle Scholar
  9. 9.
    Lennon, R., Pons, D., Sabin, M. A., Wei, C., Shield, J. P., Coward, R. J., Tavare, J. M., Mathieson, P. W., Saleem, M. A., & Welsh, G. I. (2009). Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrology, Dialysis, Transplantation, 24(11), 3288–3296.CrossRefGoogle Scholar
  10. 10.
    Lu, L., Peng, W., Wang, W., Wang, L., Chen, Q., & Shen, W. (2011). Effects of atorvastatin on progression of diabetic nephropathy and local RAGE and soluble RAGE expressions in rats. Journal of Zhejiang University. Science. B, 12(8), 652–659.CrossRefGoogle Scholar
  11. 11.
    Reddy, A., Rao, G., Haritha, C., Jyothi, K., & Reddy, G. (2010). Interaction study on garlic and atorvastatin with reference to nephrotoxicity in dyslipidaemic rats. Toxicology International, 17(2), 90–93.CrossRefGoogle Scholar
  12. 12.
    Jalal, R., Bagheri, S. M., Moghimi, A., & Rasuli, M. B. (2007). Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. Journal of Clinical Biochemistry and Nutrition, 41(3), 218–223.CrossRefGoogle Scholar
  13. 13.
    Shiju, T. M., Rajesh, N. G., & Viswanathan, P. (2013). Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats. Indian Journal Pharmacol, 45(1), 18–23.CrossRefGoogle Scholar
  14. 14.
    Abdelsattar, M. H. (2013). Garlic oil as an effective protective agent against syclosporine-induced nephrotoxicity in rats. International Journal of Medical and Aromatic Plants, 3(1), 85–92.Google Scholar
  15. 15.
    Hassan, H. A., El-Agmy, S. M., Gaur, R. L., Fernando, A., Raj, M. H., & Ouhtit, A. (2009). In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. International Journal of Biological Sciences, 5(3), 249–255.CrossRefGoogle Scholar
  16. 16.
    Lee, J. H., Kim, K. A., Kwon, K. B., Kim, E. K., Lee, Y. R., Song, M. Y., Koo, J. H., Ka, S. O., Park, J. W., & Park, B. H. (2007). Diallyl disulfide accelerates adipogenesis in 3T3-L1 cells. International Journal of Molecular Medicine, 20(1), 59–64.PubMedGoogle Scholar
  17. 17.
    Zheng, H. M., Li, H. B., Wang, D. W., & Liu, D. (2013). Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials. Journal of Food Science, 78(8), N1301–N1306.CrossRefGoogle Scholar
  18. 18.
    Ragavan, G., Muralidaran, Y., Sridharan, B., Nachiappa Ganesh, R., & Viswanathan, P. (2017). Evaluation of garlic oil in nano-emulsified form: optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food and Chemical Toxicology, 105, 203–213.CrossRefGoogle Scholar
  19. 19.
    Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320.CrossRefGoogle Scholar
  20. 20.
    Satoh, K., Keimatsu, N., Kanda, M., Kasai, T., Takaguri, A., Sun, F., & Ichihara, K. (2005). HMG-CoA reductase inhibitors do not improve glucose intolerance in spontaneously diabetic Goto-Kakizaki rats. Biological & Pharmaceutical Bulletin, 28(11), 2092–2095.CrossRefGoogle Scholar
  21. 21.
    Pinto, A. P., Massafera, G., Jordao, A. A., & Costa, T. M. B. (2013). Anthropometric and biochemical parameters of rats treated with low-carbohydrate diet. Univers Journal Food Nutrition, 1(2), 16–21.Google Scholar
  22. 22.
    Fraulab, J. C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M. B., & A. Mandarim-de-Lacerda, C. (2010). A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. Journal of Clinical Biochemistry and Nutrition, 46(3), 212–223.CrossRefGoogle Scholar
  23. 23.
    Sridharan, B., Mehra, Y., Ganesh, R. N., & Viswanathan, P. (2016). Regulation of urinary crystal inhibiting proteins and inflammatory genes by lemon peel extract and formulated citrus bioflavonoids on ethylene glycol induced urolithic rats. Food and Chemical Toxicology, 94, 75–84.CrossRefGoogle Scholar
  24. 24.
    Koenig, R. (1981). Indirect ELISA methods for the broad specificity detection of plant viruses. The Journal of General Virology, 55(1), 53–62.CrossRefGoogle Scholar
  25. 25.
    Shiju, T. M., Mohan, V., Balasubramanyam, M., & Viswanathan, P. (2015). Soluble CD36 in plasma and urine: a plausible prognostic marker for diabetic nephropathy. Journal of Diabetes and its Complications, 29(3), 400–406.CrossRefGoogle Scholar
  26. 26.
    Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108, 303–318.CrossRefGoogle Scholar
  27. 27.
    Renu, K., Gopi, K., & Jayaraman, G. (2014). Formulation and characterisation of antibody-conjugated soy protein nanoparticles—implications for neutralisation of snake venom with improved efficiency. Applied Biochemistry and Biotechnology, 174(7), 2557–2570.CrossRefGoogle Scholar
  28. 28.
    Cretu, R., & Solea, L. C. (2017). Zeta potential and color investigations of vegetable oil based emulsions as eco-friendly lubricants. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18(2), 167–180.Google Scholar
  29. 29.
    Vatandoost, N., Amini, M., Iraj, B., Momenzadeh, S., & Salehi, R. (2015). Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats. Gene, 572(1), 95–100.CrossRefGoogle Scholar
  30. 30.
    Sinitskaya, N., Gourmelen, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pévet, P., & Challet, E. (2007). Increasing the fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic state in rats. Clinical Science, 113(10), 417–425.CrossRefGoogle Scholar
  31. 31.
    Hou, N., Han, F., Wang, M., Na, H., Zhao, J., Liu, X., & Sun, X. (2014). Perirenal fat associated with microalbuminuria in obese rats. International Urology and Nephrology, 46(4), 839–845.CrossRefGoogle Scholar
  32. 32.
    Palatini, P. (2012). Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrology, Dialysis, Transplantation, 27(5), 1708–1714.CrossRefGoogle Scholar
  33. 33.
    Garg, V., Kumar, M., Mahapatra, H. S., Chitkara, A., Gadpayle, A. K., & Sekhar, V. (2015). Novel urinary biomarkers in pre-diabetic nephropathy. Clinical and Experimental Nephrology, 19(5), 895–900.CrossRefGoogle Scholar
  34. 34.
    Henegar, J. R., Bigler, S. A., Henegar, L.k., Tyagi, S. C., & Hall, J. E. (2001). Functional and structural changes in the kidney in the early stages of obesity. Journal of the American Society of Nephrology, 12(6), 1211–1217.Google Scholar
  35. 35.
    Serra, A., Romero, R., Lopez, D., Navarro, M., Esteve, A., Perez, N., Alastrue, A., & Ariza, A. (2008). Renal injury in the extremely obese patients with normal renal function. Kidney International, 73(8), 947–955.CrossRefGoogle Scholar
  36. 36.
    Virtue, S., & Vidal-Puig, A. (2012). Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochimica et Biophysica Acta, 1801(3), 338–349.CrossRefGoogle Scholar
  37. 37.
    Jiang, T., Wang, Z., Proctor, G., Moskowitz, S., Liebman, S. E., Rogers, T., Lucia, M. S., Li, J., & Levi, M. (2005). Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. The Journal of Biological Chemistry, 280(37), 32317–32325.CrossRefGoogle Scholar
  38. 38.
    Agrawal, V., Prasad, N., Jain, M., & Pandey, R. (2013). Reduced podocin expression in minimal change disease and focal segmental glomerulosclerosis is related to the level of proteinuria. Clinical and Experimental Nephrology, 17(6), 811–818.CrossRefGoogle Scholar
  39. 39.
    Akter, R., Nessa, A., Husain, M. F., Wahed, F., Khatun, N., Yesmin, M., Nasreen, S., & Tajkia, T. (2017). Effect of obesity on fasting blood sugar. Mymensingh Medical Journal, 26(1), 7–11.PubMedGoogle Scholar
  40. 40.
    Lai, Y.,. S., Chen, W.,. C., Ho, C.,. T., Lu, K.,. H., Lin, S. H., Tseng, H. C., Lin, S. Y., & Sheen, L. Y. (2014). Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. Journal of Agricultural and Food Chemistry, 62(25), 5897–5906.CrossRefGoogle Scholar
  41. 41.
    Liu, C. T., Hsu, T. W., Chen, K. M., Tan, Y. P., Lii, C. K., & Sheen, L. Y. (2012). The antidiabetic effect of garlic oil is associated with ameliorated oxidative stress but not ameliorated level of pro-inflammatory cytokines in skeletal muscle of Streptozotocin-induced diabetic rats. Journal Traditional Complementary Medicines, 2(2), 135–144.CrossRefGoogle Scholar
  42. 42.
    Yang, C., Li, L., Yang, L., Lu, H., Wang, S., & Sun, G. (2018). Anti-obesity and hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutrition and Metabolism, 15(1), 43.CrossRefGoogle Scholar
  43. 43.
    Omnia, M., Elhamid, A., Hatem, B., Rania, H.M., Abou-Elnaga. (2014). Biochemical effect of garlic oil administration in heart necrosis induced experimentally in rats. Benha Veterinary Medicinal Journal 27(2), 264–276.Google Scholar
  44. 44.
    Liu, C. T., Wong, P. L., Lii, C. K., Hse, H., & Sheen, L. Y. (2006). Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. Food and Chemical Toxicology, 44(8), 1377–1384.CrossRefGoogle Scholar
  45. 45.
    Anuchapreeda, S., Fukumori, Y., Okonogi, S., & Ichikawa, H. (2012). Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. Journal Nanotechnol, Article ID, 270383 11 pages.Google Scholar
  46. 46.
    Sodimu, O., Joseph, P. K., & Augusti, K. T. (1984). Certain biochemical effects of garlic oil on rats maintained on high fat-high cholesterol diet. Experientia, 40(1), 78–80.CrossRefGoogle Scholar
  47. 47.
    Chade, A. R., Tullos, N. A., Harvey, T. W., Mahdi, F., & Bidwell 3rd, G. L. (2016). Renal therapeutic angiogenesis using a bioengineered polymer-stabilized vascular endothelial growth factor construct. J Am Soc Nephrol., 27(6), 1741–1752.CrossRefGoogle Scholar
  48. 48.
    Boini, K. M., Xia, M., Abais, J. M., Li, G., Pitzer, A. L., Gehr, T. W., Zhang, Y., & Li, P. L. (2014). Activation of inflammasomes in podocyte injury of mice on the high fat diet: effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta, 1843(5), 836–845.CrossRefGoogle Scholar
  49. 49.
    Sekulic, M., & Pichler Sekulic, S. (2013). A compendium of urinary biomarkers indicative of glomerular podocytopathy. Pathology Research International, 2013, 782395.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Renal Research Lab, Centre for Biomedical Research, School of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia
  2. 2.Department of PathologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PuducherryIndia

Personalised recommendations