Susceptibility of 99mTc-Ciprofloxacin for Common Infection Causing Bacterial Strains Isolated from Clinical Samples: an In Vitro and In Vivo Study

  • Syed Ali Raza NaqviEmail author
  • Samina Roohi
  • Hassina Sabir
  • Sohail Anjum Shahzad
  • Aysha Aziz
  • Rashid Rasheed


99mTc-ciprofloxacin scintigraphy is useful in the detection of gram-positive and gram-negative bacterial infections and also for differentiating the infection from aseptic inflammation. However, due to growing bacterial resistance to antibiotics, the 99mTc-ciprofloxacin no longer can be effective in broad-spectrum infection imaging as it is gradually losing specificity. In this study, we are presenting our findings regarding the in vitro and in vivo susceptibility of 99mTc-ciprofloxacin for multi-drug-resistant Staphylococcus aurous, Escherichia coli, and Pseudomonas aeruginosa bacterial strains which were isolated from clinical samples. The results of radiosynthesis of 99mTc-ciprofloxacin showed more the 95% radiochemical purity and less than 5% radioactive impurities. In vitro 99mTc-ciprofloxacin susceptibility test showed that E. coli offered more resistant to 99mTc-ciprofloxacin as compared to S. aurous and P. aeruginosa. In vivo study using bacterial infection induced rabbit model also revealed lowest uptake by E. coli lesion. The T/NT values were obtained 1.96 ± 0.15 in the case of E. coli; 2.81 ± 0.51 in the case of S. aurous; and 2.32 ± 0.66 in the case of P. aeruginosa at 4 h post-injection. The SPECT infection imaging of S. aurous, E. coli, and P. aeruginosa bacterial infection induced rabbit models also indicated the clear accumulation in S. aurous and P. aeruginosa lesions while negligible uptake by E. coli lesion further verify the in vitro and in vivo susceptibility profile. On the bases of the results obtained, the 99mTc-ciprofloxacin showed selective and poor broad spectrum SPECT infection imaging.


Ciprofloxacin Infection Scintigraphy Infection imaging Radiopharmaceuticals 



The study is a part of the Higher Education Commission, Islamabad, Pakistan (HEC)-funded project no. 5612/Punjab/NRPU/R&D/HEC/2016 (Project Title: Development of novel fluoroquinolone derivatives as radiopharmaceuticals using structural modification to bypass problems of bacterial resistance in infection imaging). The authors are also thankful to GCU Faisalabad, PINSTECH Islamabad, and INOR Abbottabad for providing the resources, platform, and technical assistance to conduct this research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mirshojaei, S. F., Ahmadi, A., Morales-Avila, E., Ortiz-Reynoso, M., & Reyes-Perez, H. (2016). Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. Journal of Drug Targeting, 24(2), 91–101.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sarda, L., Crémieux, A.-C., Lebellec, Y., Meulemans, A., Lebtahi, R., Hayem, G., Génin, R., Delahaye, N., Huten, D., & Le Guludec, D. (2003). Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. Journal of Nuclear Medicine, 44, 920–926.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Palestro, C. J. (1994). The current role of gallium imaging in infection. Seminars in Nuclear Medicine, 24(2), 128–141.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fuster, D., Soriano, A., Garcia, S., Piera, C., Suades, J., Rodríguez, D., Martinez, J. C., Mensa, J., Campos, F., & Pons, F. (2011). Usefulness of 99mTc-ciprofloxacin scintigraphy in the diagnosis of prosthetic joint infections. Nuclear Medicine Communications, 32(1), 44–51.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Devillers, A., Moisan, A., Jean, S., Arvieux, C., & Bourguet, P. (1995). Technetium-99m hexamethylpropylene amine oxime leucocyte scintigraphy for the diagnosis of bone and joint infections: a retrospective study in 116 patients. European Journal of Nuclear Medicine, 22(4), 302–307.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pring, D. J., Henderson, R. G., Keshavarzian, A., Rivett, A. G., Krausz, T., Coombs, R. R., & Lavender, J. P. (1986). Indium-granulocyte scanning in the painful prosthetic joint. AJR. American Journal of Roentgenology, 147(1), 167–172.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Solanki, K. K., Bomanji, J., Siraj, Q., Small, M., & Britton, K. E. (1993). Tc99m “Infecton”: a new class of radiopharmaceutical for imaging infection [abstract]. Journal of Nuclear Medicine, 34(suppl), 119.Google Scholar
  8. 8.
    Britton, K. E., Wareham, D. W., Das, S. S., Solanki, K. K., Amaral, H., Bhatnagar, A., Katamihardja, A. H. S., Malamitsi, J., Moustafa, H. M., Soroa, V. E., Sundram, F. X., & Padhy, A. K. (2002). Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton). Journal of Clinical Pathology, 55(11), 817–823.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Naqvi, S. A. R., & Drlica, K. (2017). Fluoroquinolones as imaging agents for bacterial infection. Dalton Transactions, 46(42), 14452–14460.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rath, S., & Padhy, R. N. (2015). Prevalence of fluoroquinolone resistance in Escherichia coli in an Indian teaching hospital and adjoining communities. The Journal of Taibah University Medical Sciences, 10, 504–508.CrossRefGoogle Scholar
  11. 11.
    Gade, N. D., & Qazi, M. S. (2013). Fluoroquinolone therapy in Staphylococcus aureus infections: where do we stand? Journal of Laboratory Physicians, 5(2), 109–112.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yang, X., Xing, B., Liang, C., Ye, Z., & Zhang, Y. (2015). Prevalence and fluoroquinolone resistance of Pseudomonas aeruginosa in a hospital of South China. International Journal of Clinical and Experimental Medicine, 8, 1386–1390.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Auletta, S., Galli, F., Lauri, C., Martinelli, D., Santino, I., & Signore, A. (2016). Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clinical and Translational Imaging, 4(4), 229–252.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Naqvi, S. A. R., Roohi, S., Iqbal, A., Sherazi, T. A., Zahoor, A. F., & Imran, M. (2018). Ciprofloxacin: from infection therapy to molecular imaging. Molecular Biology Reports, 45(5), 1457–1468.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rashid, R., Raza, N. S. A., Hussain, G. S. J., Fawad, Z. A., Asif, J., & Nidda, S. (2017). 99mTc-tazobactam, a novel infection imaging agent: radiosynthesis, quality control, biodistribution, and infection imaging studies. Journal of Labelled Compounds and Radiopharmaceuticals, 60(5), 242–249.CrossRefGoogle Scholar
  16. 16.
    Ilem-Ozdemir, D., Caglayan-Orumlu, O., Asikoglu, M., Ozkilic, H., Yilmaz, F., & Hosgor-Limoncu, M. (2016). Evaluation of 99mTc-amoxicillin sodium as an infection imaging agent in bacterially infected and sterile inflamed rats. Journal of Radioanalytical and Nuclear Chemistry, 308(3), 995–1004.CrossRefGoogle Scholar
  17. 17.
    Mirshojaei, S. F. (2015). Advances in infectious foci imaging using 99mTc radiolabelled antibiotics. Journal of Radioanalytical and Nuclear Chemistry, 304(3), 975–988.CrossRefGoogle Scholar
  18. 18.
    Shah, S. Q., & Alam, M. (2017). Synthesis of 99mTc-Rifabutin: a potential tuberculosis radiodiagnostic agent. Infectious Disorders Drug Targets, 17, 185–191.CrossRefGoogle Scholar
  19. 19.
    Shah, S. Q., & Khan, M. R. (2013). Synthesis of (99m) Tc labeled temafloxacin complex and biodistribution in male Wistar rats artificially infected with streptococci pneumonia. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 22, 319–325.Google Scholar
  20. 20.
    Shah, S. Q., & Khan, M. R. (2014). Synthesis of (99m)TcN-clinafloxacin dithiocarbamate complex and comparative radiobiological evaluation in Staphylococcus aureus infected mice. World Journal of Nuclear Medicine, 13(3), 154–158.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ahmed, M. T., Naqvi, S. A. R., Rasheed, R., Zahoor, A. F., Usman, M., & Hussain, Z. (2017). Technetium-99m-labeled sulfadiazine: a targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Escherichia coli in mouse and rabbit models. Applied Biochemistry and Biotechnology, 183(1), 374–384.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Iqbal, A., Naqvi, S. A. R., Rasheed, R., Mansha, A., Ahmad, M., & Zahoor, A. F. (2018). Radiosynthesis and biodistribution of 99mTc-metronidazole as an Escherichia coli infection imaging radiopharmaceutical. Applied Biochemistry and Biotechnology, 185(1), 127–139.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Akram, A. R., Avlonitis, N., Craven, T., Vendrell, M., McDonald, N., Scholefield, E., Fisher, A., Corris, P., Haslett, C., Bradley, M., & Dhaliwal, K. (2016). Structural modifications of the antimicrobial peptide ubiquicidin for pulmonary imaging of bacteria in the alveolar space. The Lancet, 387, S17.CrossRefGoogle Scholar
  24. 24.
    Akram, A. R., Avlonitis, N., Lilienkampf, A., Perez-Lopez, A. M., McDonald, N., Chankeshwara, S. V., Scholefield, E., Haslett, C., Bradley, M., & Dhaliwal, K. (2015). A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chemical Science, 6(12), 6971–6979.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Oh, S. J., Ryu, J.-S., Shin, J. W., Yoon, E. J., Ha, H.-J., Cheon, J. H., & Lee, H. K. (2002). Synthesis of 99mTc-ciprofloxacin by different methods and its biodistribution. Applied Radiation and Isotopes, 57(2), 193–200.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Siaens, R. H., Rennen, H. J., Boerman, O. C., Dierckx, R., & Slegers, G. (2004). Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. Journal of Nuclear Medicine, 45, 2088–2094.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, J., Zhang, S., Guo, H., & Wang, X. (2010). Synthesis and biological evaluation of a novel 99mTc(CO)3 complex of ciprofloxacin dithiocarbamate as a potential agent to target infection. Bioorganic & Medicinal Chemistry Letters, 20(12), 3781–3784.CrossRefGoogle Scholar
  28. 28.
    Kumar, V., & Boddeti, D. K. (2013). (68)Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results in Cancer Research. Fortschritte der Krebsforschung. Progres dans les Recherches sur le Cancer, 194, 189–219.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gowrishankar, G., Hardy, J., Wardak, M., Namavari, M., Reeves, R. E., Neofytou, E., Srinivasan, A., Wu, J. C., Contag, C. H., & Gambhir, S. S. (2017). Specific imaging of bacterial infection using 6″-18F-fluoromaltotriose: a second-generation PET tracer targeting the maltodextrin transporter in bacteria. Journal of Nuclear Medicine, 58(10), 1679–1684.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sellmyer, M. A., Lee, I., Hou, C., Weng, C.-C., Li, S., Lieberman, B. P., Zeng, C., Mankoff, D. A., & Mach, R. H. (2017). Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. Proceedings of the National Academy of Sciences, 114(31), 8372–8377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryGovernment College University, New CampusFaisalabadPakistan
  2. 2.Isotope Production DivisionPakistan Institute of Nuclear Science and Technology (PINSTECH)IslamabadPakistan
  3. 3.Department of ChemistryCOMSATS University Islamabad, Abbottabad CampusAbbottabadPakistan

Personalised recommendations