Advertisement

Probing the Dynamic Mechanism of Uncommon Allosteric Inhibitors Optimized to Enhance Drug Selectivity of SHP2 with Therapeutic Potential for Cancer Treatment

  • Abdolkarim Farrokhzadeh
  • Farideh Badichi AkherEmail author
  • Mahmoud E. S. SolimanEmail author
Article
  • 75 Downloads

Abstract

There is currently considerable interest in SHP2 as a potential target for treatment of cancer. Mutation in SHP2, particularly the E76A mutation, has been found to seriously confer the phosphatase high activity. Recently, two compounds, 1 and 23, have been reported as potent allosteric inhibitors of both SHP2 wild type (SHP2WT) and the E76A mutant (SHP2E76A), with higher activity than other inhibitors. However, the structural and dynamic implications of their inhibitory mechanisms are yet unexplored which deserve further attention. Herein, the MD simulation applies to gain insight into the atomistic nature of each binding mode of inhibitors 1 and 23 in both SHP2WT and SHP2E76A. The comparative analysis reveals inhibitor 1 can freeze SHP2WT and SHP2E76A in their auto-inhibited conformation better than 23, in agreement with experimental data. GLU250 in both SHP2WT and SHP2E76A and ARG111 and ARG229 in SHP2E76A play a crucial role in the higher activity of 1 compared to 23. The mutation E76A increases the binding affinity of 1 and 23 compared to the wild type, implying that the two inhibitors have been well adopted by the E76A mutant. The findings here can substantially shed light on new strategies for developing novel classes of SHP2 inhibitors with increased potency.

Keywords

SHP2WT SHP2E76A Phosphatase Allosteric inhibitor Cancer Molecular dynamic simulation 

Notes

Acknowledgements

The authors acknowledge the School of Health Sciences, the University of KwaZulu-Natal, Westville Campus, for financial assistance. They also acknowledge the Centre for High Performance Computing (CHPC, www.chpc.ac.za), Cape Town, South Africa, for computational resources. The editorial support of Ms. Carrin Martin, editor for the School of Health Sciences at UKZN, is also acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2914_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)

References

  1. 1.
    Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833–846.CrossRefGoogle Scholar
  2. 2.
    Van Huijsduijnen, R. H., Bombrun, A., & Swinnen, D. (2002). Selecting protein tyrosine phosphatases as drug targets. Drug Discovery Today, 7(19), 1013–1019.CrossRefGoogle Scholar
  3. 3.
    Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., & Wang, W. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897.CrossRefGoogle Scholar
  4. 4.
    Zhang, Z.-Y. (2001). Protein tyrosine phosphatases: prospects for therapeutics. Current Opinion in Chemical Biology, 5(4), 416–423.CrossRefGoogle Scholar
  5. 5.
    Bialy, L., & Waldmann, H. (2005). Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angewandte Chemie International Edition, 44(25), 3814–3839.CrossRefGoogle Scholar
  6. 6.
    Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.CrossRefGoogle Scholar
  7. 7.
    Chan, R. J., & Feng, G.-S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862–867.CrossRefGoogle Scholar
  8. 8.
    Matozaki, T., Murata, Y., Saito, Y., Okazawa, H., & Ohnishi, H. (2009). Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Science, 100(10), 1786–1793.CrossRefGoogle Scholar
  9. 9.
    Gavrieli, M., Watanabe, N., Loftin, S. K., Murphy, T. L., & Murphy, K. M. (2003). Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochemical and Biophysical Research Communications, 312(4), 1236–1243.CrossRefGoogle Scholar
  10. 10.
    Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M., & Saito, T. (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. Journal of Experimental Medicine, 209(6), 1201–1217.CrossRefGoogle Scholar
  11. 11.
    Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H., & Riley, J. L. (2004). SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. The Journal of Immunology, 173(2), 945–954.CrossRefGoogle Scholar
  12. 12.
    Darian, E., Guvench, O., Yu, B., Qu, C. K., & MacKerell, A. D. (2011). Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Proteins: Structure, Function, and Bioinformatics, 79(5), 1573–1588.CrossRefGoogle Scholar
  13. 13.
    Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441–450.CrossRefGoogle Scholar
  14. 14.
    Xie, J., Si, X., Gu, S., Wang, M., Shen, J., Li, H., Shen, J., Li, D., Fang, Y., & Liu, C. (2017). Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. Journal of Medicinal Chemistry, 60(24), 10205–10219.CrossRefGoogle Scholar
  15. 15.
    Garcia Fortanet, J., Chen, C. H.-T., Chen, Y.-N. P., Chen, Z., Deng, Z., Firestone, B., Fekkes, P., Fodor, M., Fortin, P. D., & Fridrich, C. (2016). Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. Journal of Medicinal Chemistry, 59(17), 7773–7782.CrossRefGoogle Scholar
  16. 16.
    Butterworth, S., Overduin, M., & Barr, A. J. (2014). Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry, 6(12), 1423–1437.CrossRefGoogle Scholar
  17. 17.
    M Scott, L., R Lawrence, H., M Sebti, S., J Lawrence, N., & Wu, J. (2010). Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, 16(16), 1843–1862.CrossRefGoogle Scholar
  18. 18.
    Song, K., Liu, X., Huang, W., Lu, S., Shen, Q., Zhang, L., & Zhang, J. (2017). Improved method for the identification and validation of allosteric sites. Journal of Chemical Information and Modeling, 57(9), 2358–2363.CrossRefGoogle Scholar
  19. 19.
    Boycott, K. M., Rath, A., Chong, J. X., Hartley, T., Alkuraya, F. S., Baynam, G., Brookes, A. J., Brudno, M., Carracedo, A., & den Dunnen, J. T. (2017). International cooperation to enable the diagnosis of all rare genetic diseases. The American Journal of Human Genetics, 100(5), 695–705.CrossRefGoogle Scholar
  20. 20.
    Huang, W., Wang, G., Shen, Q., Liu, X., Lu, S., Geng, L., Huang, Z., & Zhang, J. (2015). ASBench: benchmarking sets for allosteric discovery. Bioinformatics, 31(15), 2598–2600.CrossRefGoogle Scholar
  21. 21.
    De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061.CrossRefGoogle Scholar
  22. 22.
    Ma, X., Meng, H., & Lai, L. (2016). Motions of allosteric and orthosteric ligand-binding sites in proteins are highly correlated. Journal of Chemical Information and Modeling, 56(9), 1725–1733.CrossRefGoogle Scholar
  23. 23.
    Salamoun, J. M., & Wipf, P. (2016). Allosteric modulation of phosphatase activity may redefine therapeutic value. Washington, DC: ACS Publications.Google Scholar
  24. 24.
    Chio, C. M., Lim, C. S., & Bishop, A. C. (2015). Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry, 54(2), 497–504.CrossRefGoogle Scholar
  25. 25.
    Ahmed-Belkacem, A., Guichou, J.-F., Brillet, R., Ahnou, N., Hernandez, E., Pallier, C., & Pawlotsky, J.-M. (2014). Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: a new mechanism for antiviral intervention. Nucleic Acids Research, 42(14), 9399–9409.CrossRefGoogle Scholar
  26. 26.
    Miyamoto, D., Miyamoto, M., Takahashi, A., Yomogita, Y., Higashi, H., Kondo, S., & Hatakeyama, M. (2008). Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene, 27(25), 3508–3515.CrossRefGoogle Scholar
  27. 27.
    Chan, G., Kalaitzidis, D., & Neel, B. G. (2008). The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer and Metastasis Reviews, 27(2), 179–192.CrossRefGoogle Scholar
  28. 28.
    Tartaglia, M., Mehler, E., Goldberg, R., Zampino, G., Brunner, H., Kremer, H., van der Burgt, I., Crosby, A., Ion, A., & Jeffery, S. (2001). Mutations in the protein tyrosine kinase gene, PTPN11, cause Noonan syndrome. Nature Genetics, 29(4), 491.CrossRefGoogle Scholar
  29. 29.
    Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., Maris, J. M., Richardson, A., Bardelli, A., & Sugarbaker, D. J. (2004). Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64(24), 8816–8820.CrossRefGoogle Scholar
  30. 30.
    Che, X., Du, X.-X., Cai, X., Zhang, J., Xie, W. J., Long, Z., Ye, Z.-Y., Zhang, H., Yang, L., & Su, X.-D. (2017). Single mutations reshape the structural correlation network of the DMXAA–human STING complex. The Journal of Physical Chemistry B, 121(9), 2073–2082.CrossRefGoogle Scholar
  31. 31.
    Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984.CrossRefGoogle Scholar
  32. 32.
    Bai, Q., Pérez-Sánchez, H., Zhang, Y., Shao, Y., Shi, D., Liu, H., & Yao, X. (2014). Ligand induced change of β 2 adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis. Physical Chemistry Chemical Physics, 16(30), 15874–15885.CrossRefGoogle Scholar
  33. 33.
    Bhakat, S., Martin, A. J., & Soliman, M. E. (2014). An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. Molecular BioSystems, 10(8), 2215–2228.CrossRefGoogle Scholar
  34. 34.
    Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. y., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 15(1), 5.6. 1–5.6. 30.CrossRefGoogle Scholar
  35. 35.
    Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652.CrossRefGoogle Scholar
  36. 36.
    Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., Nakatsuji, H. (2016). Gaussian Inc. 16, revision A. 03; Gaussian Inc. Wallingford, CT.Google Scholar
  37. 37.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.CrossRefGoogle Scholar
  38. 38.
    Ramharack, P., Oguntade, S., & Soliman, M. E. (2017). Delving into Zika virus structural dynamics—a closer look at NS3 helicase loop flexibility and its role in drug discovery. RSC Advances, 7(36), 22133–22144.CrossRefGoogle Scholar
  39. 39.
    Olotu, F. A., Agoni, C., Adeniji, E., Abdullahi, M., & Soliman, M. E. (2018). Probing Gallate-mediated selectivity and high-affinity binding of epigallocatechin Gallate: a way-forward in the design of selective inhibitors for anti-apoptotic Bcl-2 proteins. Applied Biochemistry and Biotechnology, 1–20.Google Scholar
  40. 40.
    Ncub, B. N., Ramharack, P., & Soliman, M. E. (2017). An “all-in-one” pharmacophoric architecture for the discovery of potential broad-spectrum anti-flavivirus drugs. Applied Biochemistry and Biotechnology, 1–16.Google Scholar
  41. 41.
    Ndagi, U., Mhlongo, N. N., & Soliman, M. E. (2017). Emergence of a promising lead compound in the treatment of triple negative breast cancer: an insight into conformational features and ligand binding landscape of c-Src protein with UM-164. Applied Biochemistry and Biotechnology, 185, 655–675.CrossRefGoogle Scholar
  42. 42.
    Srivastava, H. K., & Sastry, G. N. (2012). Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. Journal of Chemical Information and Modeling, 52(11), 3088–3098.CrossRefGoogle Scholar
  43. 43.
    Mathew, B., Adeniyi, A. A., Dev, S., Joy, M., Ucar, G. l., Mathew, G. E., Singh-Pillay, A., & Soliman, M. E. (2017). Pharmacophore-based 3D-QSAR analysis of thienyl chalcones as a new class of human MAO-B inhibitors: investigation of combined quantum chemical and molecular dynamics approach. The Journal of Physical Chemistry B, 121(6), 1186–1203.CrossRefGoogle Scholar
  44. 44.
    Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.CrossRefGoogle Scholar
  45. 45.
    Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690.CrossRefGoogle Scholar
  46. 46.
    Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.CrossRefGoogle Scholar
  47. 47.
    Seifert, E. (2014). OriginPro 9.1: scientific data analysis and graphing software—software review. ACS PublicationsGoogle Scholar
  48. 48.
    Tsui, V., & Case, D. A. (2000). Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers, 56(4), 275–291.CrossRefGoogle Scholar
  49. 49.
    Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135.CrossRefGoogle Scholar
  50. 50.
    Barreca, M. L., Lee, K. W., Chimirri, A., & Briggs, J. M. (2003). Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Biophysical Journal, 84(3), 1450–1463.CrossRefGoogle Scholar
  51. 51.
    Harvey, M., & De Fabritiis, G. (2009). An implementation of the smooth particle mesh Ewald method on GPU hardware. Journal of Chemical Theory and Computation, 5(9), 2371–2377.CrossRefGoogle Scholar
  52. 52.
    Word, J. M., Lovell, S. C., LaBean, T. H., Taylor, H. C., Zalis, M. E., Presley, B. K., Richardson, J. S., & Richardson, D. C. (1999). Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms1. Journal of Molecular Biology, 285(4), 1711–1733.CrossRefGoogle Scholar
  53. 53.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.CrossRefGoogle Scholar
  54. 54.
    Doncheva, N. T., Klein, K., Domingues, F. S., & Albrecht, M. (2011). Analyzing and visualizing residue networks of protein structures. Trends in Biochemical Sciences, 36(4), 179–182.CrossRefGoogle Scholar
  55. 55.
    Yu, Z.-H., Zhang, R.-Y., Walls, C. D., Chen, L., Zhang, S., Wu, L., Liu, S., & Zhang, Z.-Y. (2014). Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry, 53(25), 4136–4151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Bio-computation and Drug Design Laboratory, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations