Advertisement

Applied Biochemistry and Biotechnology

, Volume 188, Issue 1, pp 165–184 | Cite as

Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: the Effect of Vildagliptin, Metformin, and Their Combination

  • Petra Tomášová
  • Martina Bugáňová
  • Helena Pelantová
  • Martina Holubová
  • Blanka Šedivá
  • Blanka Železná
  • Martin Haluzík
  • Lenka Maletínská
  • Jaroslav Kuneš
  • Marek KuzmaEmail author
Article

Abstract

Type 2 diabetes mellitus (T2DM) is a major epidemiological problem. Metformin and vildagliptin are well-established antidiabetic drugs. The aim of the study was to evaluate the changes of plasma metabolic profile induced by a high-fat diet (HFD) and subsequent oral administration of metformin, vildagliptin, and their combination in a mouse model of diet-induced obesity (DIO)/T2DM analyzed using quadrupole-time-of-flight mass spectrometry (qTOF-MS). Metformin treatment increased the levels of butyrylcarnitine and acylcarnitine C18:1 concentrations and decreased the levels of isoleucine concentrations compared to untreated HFD mice. Vildagliptin treatment increased levels of butyrylcarnitine and acetylcarnitine. In summary, our metabolomics study revealed multiple differences between obese diabetic HFD mice and lean standard chow diet (SCD) mice, which were partially modifiable by subsequent metformin and vildagliptin treatment.

Keywords

Mass spectrometry Metabolomics Diet-induced obese mice Plasma Vildagliptin Metformin 

Notes

Funding Information

This research was financially supported by the Grant Agency of the Czech Republic [Grant No. GA13-14105S] and Programme to support medical applied research, Ministry of Health, Czech Republic 2015-2022 [NV15-26854A]. This project was conducted within the “Prague Infrastructure for Structure Biology and Metabolomics” with the financial support of the Operational Program Prague – Competitiveness [Project No. CZ.2.16/3.1.00/24023] and institutional support [RVO 61388963, 67985823, 61388971, and RVO VFN64165]. The authors would also like to acknowledge project LO1509 of the Ministry of Education, Youth and Sports of the Czech Republic for financial support.

Compliance with Ethical Standards

All experiments were conducted according to the ethical guidelines for animal experiments and the Czech Republic law no. 246/1992 and were approved through the Committee for Experiments with Laboratory Animals of the Academy of Sciences of the Czech Republic.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2899_MOESM1_ESM.docx (503 kb)
ESM 1 (DOCX 500 kb)
12010_2018_2899_MOESM2_ESM.docx (97 kb)
ESM 2 (DOCX 96.6 kb)
12010_2018_2899_MOESM3_ESM.docx (62 kb)
ESM 3 (DOCX 61.8 kb)

References

  1. 1.
    Lu, J., Xie, G., Jia, W., & Jia, W. (2013). Metabolomics in human type 2 diabetes research. Frontiers in Medicine, 7(1), 4–13.  https://doi.org/10.1007/s11684-013-0248-4.CrossRefGoogle Scholar
  2. 2.
    Zhang, X., Imperatore, G., Thomas, W., Cheng, Y. J., Lobelo, F., Norris, K., Devlin, H. M., Ali, M. K., Gruss, S., Bardenheier, B., Cho, P., Garcia, I., Quevedo, D., Mudaliar, U., Saaddine, J., Geiss, L. S., & Gregg, E. W. (2016). Effect of lifestyle interventions on glucose regulation among adults without impaired glucose tolerance or diabetes: a systematic review and meta-analysis. Diabetes Res. Clin. Pract., 123, 149–164.  https://doi.org/10.1016/j.diabres.2016.11.020.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wiernsperger, N. F., & Bailey, C. J. (1999). The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs, 58(Suppl 1), 31–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Bailey, C. J., & Turner, R. C. (1996). Metformin. The New England Journal of Medicine, 334(9), 574–579.  https://doi.org/10.1056/NEJM199602293340906.CrossRefPubMedGoogle Scholar
  5. 5.
    Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577–1585.  https://doi.org/10.1007/s00125-017-4342-z.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A. L., Tsapas, A., Wender, R., & Matthews, D. R. (2015). Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of diabetes. Diabetes Care, 38(1), 140–149.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim, H. J., Kim, J. H., Noh, S., Hur, H. J., Sung, M. J., Hwang, J. T., Park, J. H., Yang, H. J., Kim, M. S., Kwon, D. Y., & Yoon, S. H. (2010). Metabolomic analysis of livers and serum from high fat diet induced obese mice. Journal of Proteome Research, 10(2), 722–731.  https://doi.org/10.1021/pr100892r.CrossRefPubMedGoogle Scholar
  8. 8.
    Irving, B. A., Carter, R. E., Soop, M., Weymiller, A., Syed, H., Karakelides, H., Bhagra, S., Short, K. R., Tatpati, L., Barazzoni, R., & Nair, K. S. (2016). Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism, 64, 720–728.  https://doi.org/10.1016/j.metabol.2015.01.008.Effect.CrossRefGoogle Scholar
  9. 9.
    Huo, T., Cai, S., Lu, X., Sha, Y., Yu, M., & Li, F. (2009). Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. Journal of Pharmaceutical and Biomedical Analysis, 49(4), 976–982.  https://doi.org/10.1016/j.jpba.2009.01.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu, Y., Feng, Y., Shen, L., Xu, D., Wang, B., Ruan, K., & Cong, W. (2013). Effect of metformin on the urinary metabolites of diet-induced-obese mice studied by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF/MS). Journal of Chromatography B, 925, 110–116.  https://doi.org/10.1016/j.jchromb.2013.02.040.CrossRefGoogle Scholar
  11. 11.
    Huo, T., Xiong, Z., Lu, X., & Cai, S. (2015). Metabonomic study of biochemical changes in urinary of type 2 diabetes mellitus patients after the treatment of sulfonylurea antidiabetic drugs based on ultra-performance liquid chromatography/mass spectrometry. Biomedical Chromatography, 29(1), 115–122.  https://doi.org/10.1002/bmc.3247.CrossRefPubMedGoogle Scholar
  12. 12.
    Qiu, Y., Rajagopalan, D., Connor, S. C., Damian, D., Zhu, L., Handzel, A., Hu, G., Amanullah, A., Bao, S., Woody, N., MacLean, D., Lee, K., Vanderwall, D., & Ryan, T. (2008). Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus. Metabolomics, 4(4), 337–346.  https://doi.org/10.1007/s11306-008-0123-5.CrossRefGoogle Scholar
  13. 13.
    Pelantová, H., Bugáňová, M., Holubová, M., Šedivá, B., Zemenová, J., Sýkora, D., Kaválková, P., Haluzík, M., Železná, B., Maletínská, L., Kuneš, J., & Kuzma, M. (2016). Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol. Cell. Endocrinol.  https://doi.org/10.1016/j.mce.2016.05.003.
  14. 14.
    Xu, J., Liu, C., & Cai, S. (2013). Metabolomic profilings of urine and serum from high fat-fed rats via 1 H NMR spectroscopy and pattern recognition. Applied Biochemistry and Biotechnology, 169(4), 1250–1261.  https://doi.org/10.1007/s12010-012-0072-3.CrossRefPubMedGoogle Scholar
  15. 15.
    Maletinska, L., Nagelova, V., Ticha, A., Zemenova, J., Pirnik, Z., Holubova, M., Spolcova, A., Mikulaskova, B., Blechova, M., Sykora, D., Lacinova, Z., Haluzik, M., Zelezna, B., & Kunes, J. (2015). Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. International Journal of Obesity, 39(6), 986–993.  https://doi.org/10.1038/ijo.2015.28.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu, T., Xie, G., Ni, Y., Liu, T., Yang, M., Wei, H., Jia, W., & Ji, G. (2015). Serum metabolite signatures of type 2 diabetes mellitus complications. Journal of Proteome Research, 14(1), 447–456.  https://doi.org/10.1021/pr500825y.CrossRefPubMedGoogle Scholar
  17. 17.
    Villarreal-Pérez, J. Z., Villarreal-Martínez, J. Z., Lavalle-González, F. J., Torres-Sepúlveda, M. D. R., Ruiz-Herrera, C., Cerda-Flores, R. M., Castillo-García, E. R., Rodríguez-Sánchez, I. P., & Martínez de Villarreal, L. E. (2014). Plasma and urine metabolic profiles are reflective of altered beta-oxidation in non-diabetic obese subjects and patients with type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 6(1), 129.  https://doi.org/10.1186/1758-5996-6-129.CrossRefPubMedGoogle Scholar
  18. 18.
    Balas, B., Baig, M. R., Watson, C., Dunning, B. E., Ligueros-Saylan, M., Wang, Y., He, Y. L., Darland, C., Holst, J. J., Deacon, C. F., Cusi, K., Mari, A., Foley, J. E., & DeFronzo, R. A. (2007). The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. The Journal of Clinical Endocrinology and Metabolism, 92(4), 1249–1255.  https://doi.org/10.1210/jc.2006-1882.CrossRefPubMedGoogle Scholar
  19. 19.
    Mari, A., Sallas, W. M., He, Y. L., Watson, C., Ligueros-Saylan, M., Dunning, B. E., Deacon, C. F., Holst, J. J., & Foley, J. E. (2005). Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed ??-cell function in patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 90(8), 4888–4894.  https://doi.org/10.1210/jc.2004-2460.CrossRefPubMedGoogle Scholar
  20. 20.
    Lotfi, P., Yaghmaei, P., & Ebrahim-Habibi, A. (2015). Cymene and metformin treatment effect on biochemical parameters of male NMRI mice fed with high fat diet. Journal of Diabetes and Metabolic Disorders, 14(1), 52.  https://doi.org/10.1186/s40200-015-0182-x.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hong, A. R., Lee, J., Ku, E. J., Hwangbo, Y., Kim, K. M., Moon, J. H., Choi, S. H., Jang, H. C., & Lim, S. (2015). Comparison of vildagliptin as an add-on therapy and sulfonylurea dose-increasing therapy in patients with inadequately controlled type 2 diabetes using metformin and sulfonylurea (VISUAL study): a randomized trial. Diabetes Research and Clinical Practice, 109(1), 141–148.  https://doi.org/10.1016/j.diabres.2015.04.019.CrossRefPubMedGoogle Scholar
  22. 22.
    Halimi, S., Schweizer, A., Minic, B., Foley, J., & Dejager, S. (2008). Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet. Vascular Health and Risk Management, 4(3), 481–492.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Giesbertz, P., Padberg, I., Rein, D., Ecker, J., Höfle, A. S., Spanier, B., & Daniel, H. (2015). Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia, 58(9), 2133–2143.  https://doi.org/10.1007/s00125-015-3656-y.CrossRefPubMedGoogle Scholar
  24. 24.
    She, P., Olson, K. C., Kadota, Y., Inukai, A., Shimomura, Y., Hoppel, C. L., Adams, S. H., Kawamata, Y., Matsumoto, H., Sakai, R., Lang, C. H., & Lynch, C. J. (2013). Leucine and protein metabolism in obese Zucker rats. PLoS One, 8(3), e59443.  https://doi.org/10.1371/journal.pone.0059443.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lian, K., Du, C., Liu, Y., Zhu, D., Yan, W., Zhang, H., Hong, Z., Liu, P., Zhang, L., Pei, H., Zhang, J., Gao, C., Xin, C., Cheng, H., Xiong, L., & Tao, L. (2015). Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes, 64(1), 49–59.  https://doi.org/10.2337/db14-0312.CrossRefGoogle Scholar
  26. 26.
    Hawley, S. A., Gadalla, A. E., Olsen, G. S., & Hardie, D. G. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes, 51(8), 2420–2425.  https://doi.org/10.2337/diabetes.51.8.2420.CrossRefPubMedGoogle Scholar
  27. 27.
    Luo, P., Yu, H., Zhao, X., Bao, Y., Hong, C. S., Zhang, P., Tu, Y., Yin, P., Gao, P., Wei, L., Zhuang, Z., Jia, W., & Xu, G. (2016). Metabolomics study of Roux-en-Y gastric bypass surgery (RYGB) to treat type 2 diabetes patients based on ultraperformance liquid chromatography-mass spectrometry. Journal of Proteome Research, 15(4), 1288–1299.  https://doi.org/10.1021/acs.jproteome.6b00022.CrossRefPubMedGoogle Scholar
  28. 28.
    Garthwaite, T. L., Kalkhoff, R. K., Guansing, A. R., Hagen, T. C., & Menahan, L. A. (1979). Plasma free tryptophan, brain serotonin, and an endocrine profile of the genetically obese hyperglycemic mouse at 4–5 months of age. Endocrinology, 105, 1178–1182.CrossRefPubMedGoogle Scholar
  29. 29.
    She, P., Van Horn, C., Reid, T., Hutson, S. M., Cooney, R. N., & Lynch, C. J. (2007). Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. American Journal of Physiology. Endocrinology and Metabolism, 293(6), 1552–1563.  https://doi.org/10.1152/ajpendo.00134.2007.CrossRefGoogle Scholar
  30. 30.
    Xu, F., Tavintharan, S., Sum, C. F., Woon, K., Lim, S. C., & Ong, C. N. (2013). Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. The Journal of Clinical Endocrinology and Metabolism, 98(6), 1060–1065.  https://doi.org/10.1210/jc.2012-4132.CrossRefGoogle Scholar
  31. 31.
    Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J. R. B., Newgard, C. B., Lopaschuk, G. D., & Muoio, D. M. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism, 7(1), 45–56.  https://doi.org/10.1016/j.cmet.2007.10.013.CrossRefPubMedGoogle Scholar
  32. 32.
    Viollet, B., Guigas, B., Garcia, N. S., Leclerc, J., Foretz, M., & Andreelli, F. (2012). Cellular and molecular mechanisms of metformin: an overview. Clinical Science, 122(6), 253–270.  https://doi.org/10.1042/CS20110386.CrossRefPubMedGoogle Scholar
  33. 33.
    Srivastava, R. A. K., Pinkosky, S. L., Filippov, S., Hanselman, J. C., Cramer, C. T., & Newton, R. S. (2012). AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. Journal of Lipid Research, 53(12), 2490–2514.  https://doi.org/10.1194/jlr.R025882.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Koonen, D. P. Y., Jacobs, R. L., Febbraio, M., Young, M. E., Soltys, C. L. M., Ong, H., Vance, D. E., & Dyck, J. R. B. (2007). Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes, 56(12), 2863–2871.  https://doi.org/10.2337/db07-0907.CrossRefPubMedGoogle Scholar
  35. 35.
    Schreurs, M., Kuipers, F., & Van Der Leij, F. R. (2010). Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obesity Reviews, 11(5), 380–388.  https://doi.org/10.1111/j.1467-789X.2009.00642.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Aiyar, N., Disa, J., Ao, Z., Ju, H., Nerurkar, S., Willette, R. N., Macphee, C. H., Johns, D. G., & Douglas, S. A. (2007). Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Molecular and Cellular Biochemistry, 295(1-2), 113–120.  https://doi.org/10.1007/s11010-006-9280-x.CrossRefPubMedGoogle Scholar
  37. 37.
    Schmitz, G., & Ruebsaamen, K. (2010). Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis, 208(1), 10–18.  https://doi.org/10.1016/j.atherosclerosis.2009.05.029.CrossRefPubMedGoogle Scholar
  38. 38.
    Shirouchi, B., Nagao, K., Inoue, N., Ohkubo, T., Hibino, H., & Yanagita, T. (2007). Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats. Journal of Agricultural and Food Chemistry, 55(17), 7170–7176.  https://doi.org/10.1021/jf071225x.CrossRefPubMedGoogle Scholar
  39. 39.
    Sirdah, M. M., Abushahla, A. K., & Al-Sarraj, H. A. A. (2013). Effect of the addition of the antioxidant taurine on the complete blood count of whole blood stored at room temperature and at 4°C for up to 7 days. Revista Brasileira de Hematologia e Hemoterapia, 35(1), 44–51.  https://doi.org/10.5581/1516-8484.20130014.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wu, F., Koenig, K. L., Zeleniuch-Jacquotte, A., Jonas, S., Afanasyeva, Y., Wójcik, O. P., Costa, M., & Chen, Y. (2016). Serum taurine and stroke risk in women: a prospective, nested case-control study. PLoS One, 11(2), e0149348.  https://doi.org/10.1371/journal.pone.0149348.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ito, T., Yoshikawa, N., Ito, H., & Schaffer, S. W. (2015). Impact of taurine depletion on glucose control and insulin secretion in mice. Journal of Pharmacological Sciences, 129(1), 59–64.  https://doi.org/10.1016/j.jphs.2015.08.007.CrossRefPubMedGoogle Scholar
  42. 42.
    Pop-Busui, R., Sullivan, K. a., Van Huysen, C., Bayer, L., Cao, X., Towns, R., & Stevens, M. J. (2001). Depletion of taurine in experimental diabetic neuropathy: implications for nerve metabolic, vascular, and functional deficits. Experimental Neurology, 168(2), 259–272.  https://doi.org/10.1006/exnr.2000.7591.CrossRefPubMedGoogle Scholar
  43. 43.
    Ha, H., Yu, M. R., & Kim, K. H. (1999). Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radical Biology & Medicine, 26, 944–950.CrossRefGoogle Scholar
  44. 44.
    Hansen, S. H. (2001). The role of taurine in diabetes and the development of diabetic complications. Diabetes/Metabolism Research and Reviews, 17(5), 330–346.  https://doi.org/10.1002/dmrr.229.CrossRefPubMedGoogle Scholar
  45. 45.
    Yu, H., Guo, Z., Shen, S., & Shan, W. (2016). Effects of taurine on gut microbiota and metabolism in mice. Amino Acids, 48(7), 1601–1617.  https://doi.org/10.1007/s00726-016-2219-y.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Petra Tomášová
    • 1
    • 2
  • Martina Bugáňová
    • 1
    • 3
  • Helena Pelantová
    • 1
  • Martina Holubová
    • 4
  • Blanka Šedivá
    • 5
  • Blanka Železná
    • 4
  • Martin Haluzík
    • 6
    • 7
  • Lenka Maletínská
    • 4
  • Jaroslav Kuneš
    • 4
    • 8
  • Marek Kuzma
    • 1
    Email author
  1. 1.Institute of MicrobiologyThe Czech Academy of SciencesPrague 4Czech Republic
  2. 2.Fourth Medical Department, First Faculty of MedicineCharles University in Prague and General University HospitalPrague 2Czech Republic
  3. 3.Faculty of Chemical TechnologyUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  4. 4.Institute of Organic Chemistry and BiochemistryThe Czech Academy of SciencesPrague 6Czech Republic
  5. 5.Faculty of Applied SciencesUniversity of West BohemiaPilsenCzech Republic
  6. 6.Institute of Medical Biochemistry and Laboratory Diagnostics; First Faculty of MedicineCharles University in Prague and General University HospitalPrague 2Czech Republic
  7. 7.Centre for Experimental MedicineInstitute for Clinical and Experimental MedicinePrague 4Czech Republic
  8. 8.Institute of PhysiologyThe Czech Academy of SciencesPrague 4Czech Republic

Personalised recommendations