Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1569–1580 | Cite as

A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose

  • Haitao Lin
  • Mengshi Li
  • Liyun DingEmail author
  • Jun HuangEmail author
Article
  • 127 Downloads

Abstract

A multiparameter fiber optic biosensor for continuous determination of cholesterol and glucose was developed. This sensor was based on poly(N-isopropylacrylamide) (PNIPAAm)-immobilized glucose oxidase (GOx) complex (PIGC) and immobilized cholesterol oxidase (COD). The immobilized COD catalysis to the oxidation of cholesterol and PIGC catalysis to the oxidation of glucose could be performed at different temperatures. Therefore, the sensor could detect cholesterol and glucose continuously by changing temperature. The optimal detection conditions for glucose were achieved with pH 6.5, 30 °C, and 10 mg GOx (in 100-mg carrier), and those for cholesterol were achieved with pH 7.5, 33 °C, and 25 mg COD (in 250-mg carrier). The sensor has the cholesterol detection range of 20–250 mg/dL and the glucose detection range of 50–700 mg/dL. This biosensor has outstanding repeatability and selectivity, and the detection results of the practical samples are satisfactory.

Keywords

PNIPAAm Multiparameters Fiber optic biosensor Continuous detection Phase delay 

Notes

Funding Information

This study was financially supported by National Natural Science Foundation of China (Nos 61575150, 61377092).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lu, P., Yu, J., Lei, Y., Lu, S., Wang, C., Liu, D., & Guo, Q. (2015). Synthesis and characterization of nickel oxide hollow spheres-reduced graphene oxide-nafion composite and its biosensing for glucose. Sensors and Actuators B: Chemical, 208(208), 90–98.  https://doi.org/10.1016/j.snb.2014.10.140.CrossRefGoogle Scholar
  2. 2.
    Basu, A. K., Chattopadhyay, P., Roychoudhuri, U., & Chakraborty, R. (2007). Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry, 70(2), 375–379.  https://doi.org/10.1016/j.bioelechem.2006.05.006.CrossRefGoogle Scholar
  3. 3.
    Hayek, T., Kaplan, M., Kerry, R., & Aviram, M. (2007). Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for d-glucose. Atherosclerosis, 195(2), 277–286.  https://doi.org/10.1016/j.atherosclerosis.2006.12.026.CrossRefGoogle Scholar
  4. 4.
    Song, S., Sun, L., Yuan, L., Sun, T., Zhao, Y., Zuo, W., Cong, Y., Li, X., & Wang, J. (2008). Method to determine enantiomeric excess of glucose by nonchiral high-performance liquid chromatography using circular dichroism detection. Journal of Chromatography. A, 1179(2), 125–130.  https://doi.org/10.1016/j.chroma.2007.11.092.CrossRefGoogle Scholar
  5. 5.
    Sato, T., Katayama, K., Arai, T., Sako, T., & Tazaki, H. (2008). Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography. Research in Veterinary Science, 84(1), 26–29.  https://doi.org/10.1016/j.rvsc.2007.03.002.CrossRefGoogle Scholar
  6. 6.
    Daneshfar, A., Khezeli, T., & Lotfi, H. J. (2009). Determination of cholesterol in food samples using dispersive liquid–liquid microextraction followed by HPLC–UV. Journal of Chromatography B, 877(4), 456–460.  https://doi.org/10.1016/j.jchromb.2008.12.050.CrossRefGoogle Scholar
  7. 7.
    Ahn, J., Jeong, I., Kwak, B., Leem, D., Yoon, T., Yoon, C., Jeong, J., Park, J., & Kim, J. (2012). Rapid determination of cholesterol in milk containing emulsified foods. Food Chemistry, 135(4), 2411–2417.  https://doi.org/10.1016/j.foodchem.2012.07.060.CrossRefGoogle Scholar
  8. 8.
    Matsui, Y., Hamamoto, K., Kitazumi, Y., Shirai, O., & Kano, K. (2017). Diffusion-controlled mediated electron transfer-type bioelectrocatalysis using microband electrodes as ultimate amperometric glucose sensors. Analytical Sciences, 33(7), 845–851.  https://doi.org/10.2116/analsci.33.845.CrossRefGoogle Scholar
  9. 9.
    Lu, P., Liu, Q. B., Xiong, Y. Z., Wang, Q., Lei, Y. T., Lu, S. J., Lu, L. W., & Yao, L. (2015). Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochimica Acta, 168, 148–156.  https://doi.org/10.1016/j.electacta.2015.04.003.CrossRefGoogle Scholar
  10. 10.
    Hall, G. F., & Turnler, A. P. F. (1991). An organic phase enzyme electrode for cholesterol. Analytical Letters, 24(8), 1375–1388.  https://doi.org/10.1080/00032719108052978.CrossRefGoogle Scholar
  11. 11.
    Wang, C. Y., Tan, X. R., Chen, S. H., Hu, F. X., Zhong, H. A., & Zhang, Y. (2012). The construction of glucose biosensor based on platinum nanoclusters—multiwalled carbon nanotubes nanocomposites. Applied Biochemistry and Biotechnology, 166(4), 889–902.  https://doi.org/10.1007/s12010-011-9478-6.CrossRefGoogle Scholar
  12. 12.
    Mutyala, S., & Mathiyarasu, J. (2014). Direct electron transfer at a glucose oxidase–chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Applied Biochemistry and Biotechnology, 172(3), 1517–1529.  https://doi.org/10.1007/s12010-013-0642-z.CrossRefGoogle Scholar
  13. 13.
    Palod, P. A., Pandey, S. S., Hayase, S., & Singh, V. (2014). Template-assisted electrochemical growth of polypyrrole nanotubes for development of high sensitivity glucose biosensor. Applied Biochemistry and Biotechnology, 174(3), 1059–1072.  https://doi.org/10.1007/s12010-014-0988-x.CrossRefGoogle Scholar
  14. 14.
    Barik, M. A., Sarma, M. K., Sarkar, C. R., & Dutta, J. C. (2014). Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Applied Biochemistry and Biotechnology, 174(3), 1104–1114.  https://doi.org/10.1007/s12010-014-1029-5.CrossRefGoogle Scholar
  15. 15.
    Srinivasan, G., Chen, J., Parisi, J., Brückner, C., Yao, X., & Lei, Y. (2015). An injectable PEG-BSA-Coumarin-GOx hydrogel for fluorescence turn-on glucose detection. Applied Biochemistry and Biotechnology, 177(5), 1115–1126.  https://doi.org/10.1007/s12010-015-1800-2.CrossRefGoogle Scholar
  16. 16.
    Chang, G., Tatsu, Y., Goto, T., Imaishi, H., & Morigaki, K. (2010). Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays. Talanta, 83(1), 61–65.  https://doi.org/10.1016/j.talanta.2010.08.039.CrossRefGoogle Scholar
  17. 17.
    Nirala, N. R., Abraham, S., Kumar, V., Bansal, A., Srivastava, A., & Saxena, P. S. (2015). Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors and Actuators B: Chemical, 218, 42–50.  https://doi.org/10.1016/j.snb.2015.04.091.CrossRefGoogle Scholar
  18. 18.
    Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75(3), 4019–4027.  https://doi.org/10.1021/ac020736+.CrossRefGoogle Scholar
  19. 19.
    Chung, H., Arnold, M. A., Rhiel, M., & Murhammer, D. W. (1995). Simultaneous measurement of glucose and glutamine in aqueous solutions by near infrared spectroscopy. Applied Biochemistry and Biotechnology, 50(2), 109–125.  https://doi.org/10.1007/BF02783448.CrossRefGoogle Scholar
  20. 20.
    Huang, Q. L., An, Y. R., Tang, L. L., Jiang, X. L., Chen, H., Bi, W. J., Wang, Z. C., & Zhang, W. (2011). A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: evaluation of the diabetes-accelerated atherosclerosis risk. Analytica Chimica Acta, 707(1–2), 135–141.  https://doi.org/10.1016/j.aca.2011.09.003.CrossRefGoogle Scholar
  21. 21.
    Wolfbeis, O. S. (2006). Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 78(12), 3859–3874.CrossRefGoogle Scholar
  22. 22.
    Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(3), 321–339.  https://doi.org/10.1016/S0169-409X(01)00203-4.CrossRefGoogle Scholar
  23. 23.
    Wang, B., Xu, X. D., Wang, Z. C., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2008). Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids and Surfaces, B: Biointerfaces, 64(1), 34–41.  https://doi.org/10.1016/j.colsurfb.2008.01.001.CrossRefGoogle Scholar
  24. 24.
    Satarkar, N. S., & Hilt, J. Z. (2008). Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia, 4(1), 11–16.  https://doi.org/10.1016/j.actbio.2007.07.009.CrossRefGoogle Scholar
  25. 25.
    Zhang, J. T., Keller, T. F., Bhat, R., Garipcan, B., & Jandt, K. D. (2010). A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release. Acta Biomaterialia, 6(10), 3890–3898.  https://doi.org/10.1016/j.actbio.2010.05.009.CrossRefGoogle Scholar
  26. 26.
    Zhang, X. Z., & Zhuo, R. X. (2001). Dynamic properties of temperature sensitive poly(N-isopropylacrylamide) gel crosslinked through siloxane linkage. Langmuri, 17(1), 12–16.  https://doi.org/10.1021/la000170p.CrossRefGoogle Scholar
  27. 27.
    Huang, J., Li, M. S., Zhang, P. P., Zhang, P. F., & Ding, L. Y. (2016). Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors and Actuators B: Chemical, 237, 24–27.  https://doi.org/10.1016/j.snb.2016.06.062.CrossRefGoogle Scholar
  28. 28.
    Huang, J., Fang, H., Liu, C., Gu, E. D., & Jiang, D. S. (2008). A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Analytical Letters, 41(8), 1430–1442.  https://doi.org/10.1080/00032710802119525.CrossRefGoogle Scholar
  29. 29.
    Cifuentes, A., & Marín, E. (2015). Implementation of a field programmable gate array-based lock-in amplifier. Measurement, 69, 31–41.  https://doi.org/10.1016/j.measurement.2015.02.037.CrossRefGoogle Scholar
  30. 30.
    Huang, J., Wang, H., Li, D. P., Zhao, W. Q., Ding, L. Y., & Han, Y. (2011). A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering: C, 31(7), 1374–1378.  https://doi.org/10.1016/j.msec.2011.05.003.CrossRefGoogle Scholar
  31. 31.
    Grembecka, M., Lebiedzińska, A., & Szefer, P. (2014). Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, 117(21), 77–82.  https://doi.org/10.1016/j.microc.2014.06.012.CrossRefGoogle Scholar
  32. 32.
    Zhai, H., Feng, T., Dong, L., Wang, L., Wang, X., Liu, H., Liu, Y., Chen, L., & Xie, M. (2016). Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids. Food Chemistry, 204, 444–452.  https://doi.org/10.1016/j.foodchem.2016.02.159.CrossRefGoogle Scholar
  33. 33.
    Luo, Y., Kong, F. Y., Li, C., Shi, J. J., Lv, W. X., & Wang, W. (2016). One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensors and Actuators B: Chemical, 234, 625–632.  https://doi.org/10.1016/j.snb.2016.05.046.CrossRefGoogle Scholar
  34. 34.
    Chaichi, M. J., & Ehsani, M. (2015). A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens. Actuators B, 223, 713–722.  https://doi.org/10.1016/j.snb.2015.09.125.
  35. 35.
    Guo, Z., Li, L., & Shen, H. (1999). Study and analytical application of bromopyrogallol red as a hydrogen donor substrate for peroxidase. Analytica Chimica Acta, 379(1–2), 63–68.  https://doi.org/10.1016/S0003-2670(98)00625-4.CrossRefGoogle Scholar
  36. 36.
    Sun, Q., Fang, S., Fang, Y., Qian, Z., & Feng, H. (2017). Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta, 167, 513–519.  https://doi.org/10.1016/j.talanta.2017.02.060.CrossRefGoogle Scholar
  37. 37.
    Soylemez, S., Udum, Y. A., Kesik, M., Hızlıateş, C. G., Ergun, Y., & Toppare, L. (2015). Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sen. Actuators B, 212, 425–433.  https://doi.org/10.1016/j.snb.2015.02.045.CrossRefGoogle Scholar
  38. 38.
    Zhang, M., Yuan, R., Chai, Y., Chen, S., Zhong, H., Wang, C., & Cheng, Y. (2012). A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosensors and Biolelectronics, 32(1), 288–292.  https://doi.org/10.1016/j.bios.2011.12.008.CrossRefGoogle Scholar
  39. 39.
    Wu, Y., Ma, Y., Xu, G., Wei, F., Ma, Y., Song, Q., Wang, X., Tang, T., Song, Y., Shi, M., Xu, X., & Hu, Q. (2017). Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors and Actuators B: Chemical, 249, 195–202.  https://doi.org/10.1016/j.snb.2017.03.145.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Fiber Optic Sensing TechnologyWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Fiber Optic Sensing Technology, Ministry of EducationWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations