Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1569–1580 | Cite as

A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose

  • Haitao Lin
  • Mengshi Li
  • Liyun DingEmail author
  • Jun HuangEmail author


A multiparameter fiber optic biosensor for continuous determination of cholesterol and glucose was developed. This sensor was based on poly(N-isopropylacrylamide) (PNIPAAm)-immobilized glucose oxidase (GOx) complex (PIGC) and immobilized cholesterol oxidase (COD). The immobilized COD catalysis to the oxidation of cholesterol and PIGC catalysis to the oxidation of glucose could be performed at different temperatures. Therefore, the sensor could detect cholesterol and glucose continuously by changing temperature. The optimal detection conditions for glucose were achieved with pH 6.5, 30 °C, and 10 mg GOx (in 100-mg carrier), and those for cholesterol were achieved with pH 7.5, 33 °C, and 25 mg COD (in 250-mg carrier). The sensor has the cholesterol detection range of 20–250 mg/dL and the glucose detection range of 50–700 mg/dL. This biosensor has outstanding repeatability and selectivity, and the detection results of the practical samples are satisfactory.


PNIPAAm Multiparameters Fiber optic biosensor Continuous detection Phase delay 


Funding Information

This study was financially supported by National Natural Science Foundation of China (Nos 61575150, 61377092).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lu, P., Yu, J., Lei, Y., Lu, S., Wang, C., Liu, D., & Guo, Q. (2015). Synthesis and characterization of nickel oxide hollow spheres-reduced graphene oxide-nafion composite and its biosensing for glucose. Sensors and Actuators B: Chemical, 208(208), 90–98. Scholar
  2. 2.
    Basu, A. K., Chattopadhyay, P., Roychoudhuri, U., & Chakraborty, R. (2007). Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry, 70(2), 375–379. Scholar
  3. 3.
    Hayek, T., Kaplan, M., Kerry, R., & Aviram, M. (2007). Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for d-glucose. Atherosclerosis, 195(2), 277–286. Scholar
  4. 4.
    Song, S., Sun, L., Yuan, L., Sun, T., Zhao, Y., Zuo, W., Cong, Y., Li, X., & Wang, J. (2008). Method to determine enantiomeric excess of glucose by nonchiral high-performance liquid chromatography using circular dichroism detection. Journal of Chromatography. A, 1179(2), 125–130. Scholar
  5. 5.
    Sato, T., Katayama, K., Arai, T., Sako, T., & Tazaki, H. (2008). Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography. Research in Veterinary Science, 84(1), 26–29. Scholar
  6. 6.
    Daneshfar, A., Khezeli, T., & Lotfi, H. J. (2009). Determination of cholesterol in food samples using dispersive liquid–liquid microextraction followed by HPLC–UV. Journal of Chromatography B, 877(4), 456–460. Scholar
  7. 7.
    Ahn, J., Jeong, I., Kwak, B., Leem, D., Yoon, T., Yoon, C., Jeong, J., Park, J., & Kim, J. (2012). Rapid determination of cholesterol in milk containing emulsified foods. Food Chemistry, 135(4), 2411–2417. Scholar
  8. 8.
    Matsui, Y., Hamamoto, K., Kitazumi, Y., Shirai, O., & Kano, K. (2017). Diffusion-controlled mediated electron transfer-type bioelectrocatalysis using microband electrodes as ultimate amperometric glucose sensors. Analytical Sciences, 33(7), 845–851. Scholar
  9. 9.
    Lu, P., Liu, Q. B., Xiong, Y. Z., Wang, Q., Lei, Y. T., Lu, S. J., Lu, L. W., & Yao, L. (2015). Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochimica Acta, 168, 148–156. Scholar
  10. 10.
    Hall, G. F., & Turnler, A. P. F. (1991). An organic phase enzyme electrode for cholesterol. Analytical Letters, 24(8), 1375–1388. Scholar
  11. 11.
    Wang, C. Y., Tan, X. R., Chen, S. H., Hu, F. X., Zhong, H. A., & Zhang, Y. (2012). The construction of glucose biosensor based on platinum nanoclusters—multiwalled carbon nanotubes nanocomposites. Applied Biochemistry and Biotechnology, 166(4), 889–902. Scholar
  12. 12.
    Mutyala, S., & Mathiyarasu, J. (2014). Direct electron transfer at a glucose oxidase–chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Applied Biochemistry and Biotechnology, 172(3), 1517–1529. Scholar
  13. 13.
    Palod, P. A., Pandey, S. S., Hayase, S., & Singh, V. (2014). Template-assisted electrochemical growth of polypyrrole nanotubes for development of high sensitivity glucose biosensor. Applied Biochemistry and Biotechnology, 174(3), 1059–1072. Scholar
  14. 14.
    Barik, M. A., Sarma, M. K., Sarkar, C. R., & Dutta, J. C. (2014). Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Applied Biochemistry and Biotechnology, 174(3), 1104–1114. Scholar
  15. 15.
    Srinivasan, G., Chen, J., Parisi, J., Brückner, C., Yao, X., & Lei, Y. (2015). An injectable PEG-BSA-Coumarin-GOx hydrogel for fluorescence turn-on glucose detection. Applied Biochemistry and Biotechnology, 177(5), 1115–1126. Scholar
  16. 16.
    Chang, G., Tatsu, Y., Goto, T., Imaishi, H., & Morigaki, K. (2010). Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays. Talanta, 83(1), 61–65. Scholar
  17. 17.
    Nirala, N. R., Abraham, S., Kumar, V., Bansal, A., Srivastava, A., & Saxena, P. S. (2015). Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors and Actuators B: Chemical, 218, 42–50. Scholar
  18. 18.
    Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75(3), 4019–4027. Scholar
  19. 19.
    Chung, H., Arnold, M. A., Rhiel, M., & Murhammer, D. W. (1995). Simultaneous measurement of glucose and glutamine in aqueous solutions by near infrared spectroscopy. Applied Biochemistry and Biotechnology, 50(2), 109–125. Scholar
  20. 20.
    Huang, Q. L., An, Y. R., Tang, L. L., Jiang, X. L., Chen, H., Bi, W. J., Wang, Z. C., & Zhang, W. (2011). A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: evaluation of the diabetes-accelerated atherosclerosis risk. Analytica Chimica Acta, 707(1–2), 135–141. Scholar
  21. 21.
    Wolfbeis, O. S. (2006). Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 78(12), 3859–3874.CrossRefGoogle Scholar
  22. 22.
    Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(3), 321–339. Scholar
  23. 23.
    Wang, B., Xu, X. D., Wang, Z. C., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2008). Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids and Surfaces, B: Biointerfaces, 64(1), 34–41. Scholar
  24. 24.
    Satarkar, N. S., & Hilt, J. Z. (2008). Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia, 4(1), 11–16. Scholar
  25. 25.
    Zhang, J. T., Keller, T. F., Bhat, R., Garipcan, B., & Jandt, K. D. (2010). A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release. Acta Biomaterialia, 6(10), 3890–3898. Scholar
  26. 26.
    Zhang, X. Z., & Zhuo, R. X. (2001). Dynamic properties of temperature sensitive poly(N-isopropylacrylamide) gel crosslinked through siloxane linkage. Langmuri, 17(1), 12–16. Scholar
  27. 27.
    Huang, J., Li, M. S., Zhang, P. P., Zhang, P. F., & Ding, L. Y. (2016). Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors and Actuators B: Chemical, 237, 24–27. Scholar
  28. 28.
    Huang, J., Fang, H., Liu, C., Gu, E. D., & Jiang, D. S. (2008). A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Analytical Letters, 41(8), 1430–1442. Scholar
  29. 29.
    Cifuentes, A., & Marín, E. (2015). Implementation of a field programmable gate array-based lock-in amplifier. Measurement, 69, 31–41. Scholar
  30. 30.
    Huang, J., Wang, H., Li, D. P., Zhao, W. Q., Ding, L. Y., & Han, Y. (2011). A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering: C, 31(7), 1374–1378. Scholar
  31. 31.
    Grembecka, M., Lebiedzińska, A., & Szefer, P. (2014). Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, 117(21), 77–82. Scholar
  32. 32.
    Zhai, H., Feng, T., Dong, L., Wang, L., Wang, X., Liu, H., Liu, Y., Chen, L., & Xie, M. (2016). Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids. Food Chemistry, 204, 444–452. Scholar
  33. 33.
    Luo, Y., Kong, F. Y., Li, C., Shi, J. J., Lv, W. X., & Wang, W. (2016). One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensors and Actuators B: Chemical, 234, 625–632. Scholar
  34. 34.
    Chaichi, M. J., & Ehsani, M. (2015). A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens. Actuators B, 223, 713–722.
  35. 35.
    Guo, Z., Li, L., & Shen, H. (1999). Study and analytical application of bromopyrogallol red as a hydrogen donor substrate for peroxidase. Analytica Chimica Acta, 379(1–2), 63–68. Scholar
  36. 36.
    Sun, Q., Fang, S., Fang, Y., Qian, Z., & Feng, H. (2017). Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta, 167, 513–519. Scholar
  37. 37.
    Soylemez, S., Udum, Y. A., Kesik, M., Hızlıateş, C. G., Ergun, Y., & Toppare, L. (2015). Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sen. Actuators B, 212, 425–433. Scholar
  38. 38.
    Zhang, M., Yuan, R., Chai, Y., Chen, S., Zhong, H., Wang, C., & Cheng, Y. (2012). A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosensors and Biolelectronics, 32(1), 288–292. Scholar
  39. 39.
    Wu, Y., Ma, Y., Xu, G., Wei, F., Ma, Y., Song, Q., Wang, X., Tang, T., Song, Y., Shi, M., Xu, X., & Hu, Q. (2017). Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors and Actuators B: Chemical, 249, 195–202. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Fiber Optic Sensing TechnologyWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Fiber Optic Sensing Technology, Ministry of EducationWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations