Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1398–1423 | Cite as

Synthesis and Pharmacological Evaluation of Novel Selenoethers Glycerol Derivatives for the Treatment of Pain and Inflammation: Involvement of Nitrergic and Glutamatergic Systems

  • Gelson PerinEmail author
  • Helen A. Goulart
  • Liane K. Soares
  • Thiago J. Peglow
  • Ricardo F. Schumacher
  • Mikaela P. Pinz
  • Angélica S. Reis
  • Cristiane Luchese
  • Ethel A. WilhelmEmail author


In the present study, the synthesis of new selenoethers from nucleophilic substitution reaction between organyl halides and nucleophilic species of selenium generated in situ was demonstrated. After, this method was applied for the synthesis of pyridylselenides glycerol derivatives 9b and 9c and the antinociceptive and anti-inflammatory effects, as well as, acute toxicity were evaluated. In the formalin test, the compound 9b caused a reduction in licking time in both phases. Compounds 9b and 9c increased the latency to response in the hot-plate test and reduced the licking time induced by glutamate. Our results revealed the involvement of the nitrergic and/or glutamatergic pathways in the antinociceptive action of the compounds. Additionally, 9b and 9c did not cause any toxicity signals and oxidative stress parameters were not modified by treatments. Here, it was developed an alternative and efficient method for the synthesis of selenoethers glycerol derivatives. Furthermore, we demonstrated that this class is indeed interesting for the research of new drugs.

Graphical Abstract


Nociception Nitric oxide Glutamate Selenoether Glycerol 3-Aminopyridil compounds 



The authors are grateful to CNPq, FAPERGS, CAPES, and FINEP for the financial support. CNPq is also acknowledged for the fellowship for C.L., E.A.W. and G.P.


The authors declare that they participated in the research and/or article preparation and approved the final article.


This study was supported by Brazilian agencies CNPq (UNIVERSAL 408874/2016-3) and FAPERGS (PRONEM 16/2551-0000240-1, PRONUPEQ 16/2551-0000526-5; PqG 17/2551-0001013-2).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2887_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1248 kb)


  1. 1.
    Elzahaf, R. A., Tashani, O. A., Unsworth, B. A., & Johnson, M. I. (2012). The prevalence of chronic pain with an analysis of countries with a human development index less than 0.9: a systematic review without meta-analysis. Current Medical Research and Opinion, 28(7), 1221–1229.Google Scholar
  2. 2.
    Siqueira, S. R. D., Vilela, T. T., & Florindo, A. A. (2015). Prevalence of headache and orofacial pain in adults and elders in a Brazilian community: an epidemiological study. Gerodontology, 32(2), 123–131.Google Scholar
  3. 3.
    Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 355–474.Google Scholar
  4. 4.
    Aley, K. O., & Levine, J. D. (1999). Role of protein kinase A in the maintenance of inflammatory pain. Journal of Neuroscience, 19(6), 2181–2186.Google Scholar
  5. 5.
    Molina-Ortega, F., Lomas-Vega, R., Hita-Contreras, F., Manzano, G. P., Achalandabaso, A., Ramos-Morcillo, A. J., & Martínez-Amat, A. (2014). Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception. Manual Therapy, 19(5), 411–417.Google Scholar
  6. 6.
    Dickenson, A. H. (1995). Central acute pain mechanisms. Annals of Medicine, 27(2), 223–227.Google Scholar
  7. 7.
    Cury, Y., Picolo, G., Gutierrez, V. P., & Ferreira, S. H. (2011). Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide, 25(3), 243–254.Google Scholar
  8. 8.
    Nogueira, C. W., & Rocha, J. B. (2011). Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Archives of Toxicology, 85(11), 1313–1359.Google Scholar
  9. 9.
    Peglow, T. J., Schumacher, R. F., Cargnelutti, R., Reis, A. S., Luchese, C., Wilhelm, E. A., & Perin, G. (2017). Preparation of bis (2-pyridyl) diselenide derivatives: Synthesis of selenazolo [5, 4-b] pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Letters, 58(38), 3734–3738.Google Scholar
  10. 10.
    Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C., & Wilhelm, E. A. (2016). 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. European Journal of Pharmacology, 780, 122–128.Google Scholar
  11. 11.
    Reis, A. S., Pinz, M., Duarte, L. F. B., Roehrs, J. A., Alves, D., Luchese, C., & Wilhelm, E. A. (2017). 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: contribution of the glutamatergic system. Journal of Psychiatric Research, 84, 191–199.Google Scholar
  12. 12.
    Silva, V. D., Reis, A. S., Pinz, M., da Fonseca, C. A., Duarte, L. F. B., Roehrs, J. A., et al. (2017). Further analysis of acute antinociceptive and anti-inflammatory actions of 4-phenylselenyl-7-chloroquinoline in mice. Fundamental & Clinical Pharmacology, 31(5), 513–525.Google Scholar
  13. 13.
    Wilhelm, E. A., Machado, N. C., Pedroso, A. B., Goldani, B. S., Seus, N., Moura, S., Savegnago, L., Jacob, R. G., & Alves, D. (2014). Organocatalytic synthesis and evaluation of 7-chloroquinoline-1, 2, 3-triazoyl carboxamides as potential antinociceptive, anti-inflammatory and anticonvulsant agent. RSC Advances, 4(78), 41437–41445.Google Scholar
  14. 14.
    Wilhelm, E. A., Ferreira, A. T., Pinz, M. P., Reis, A. S., Vogt, A. G., Stein, A. L., et al. (2017). Antioxidant effect of quinoline derivatives containing or not selenium: Relationship with antinociceptive action quinolines are antioxidant and antinociceptive. Anais da Academia Brasileira de Ciências, 89(1 suppl), 457–467.Google Scholar
  15. 15.
    Sharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A., Pettine, M., & Zboril, R. (2017). Assessment of toxicity of selenium and cadmium selenium quantum dots: a review. Chemosphere, 188, 403–413.Google Scholar
  16. 16.
    Davy, T., & Castellano, S. (2018). The genomics of selenium: Its past, present and future. Biochimica et Biophysica Acta (BBA)-General Subjects. in press.
  17. 17.
    Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33, 83–90.Google Scholar
  18. 18.
    Mukherjee, A. J., Zade, S. S., Singh, H. B., & Sunoj, R. B. (2010). Organoselenium chemistry: role of intramolecular interactions. Chemical Reviews, 110(7), 4357–4416.Google Scholar
  19. 19.
    Perin, G., Alves, D., Jacob, R. G., Barcellos, A. M., Soares, L. K., & Lenardao, E. J. (2016). Synthesis of organochalcogen compounds using non-conventional reaction media. Chemistry Select, 1(2), 205–258.Google Scholar
  20. 20.
    Sancineto, L., Palomba, M., Bagnoli, L., Marini, F., & Santi, C. (2016). Advances in electrophilic organochalcogen reagents. Current Organic Chemistry, 20(2), 122–135.Google Scholar
  21. 21.
    Gai, B. M., Stein, A. L., Roehrs, J. A., Bilheri, F. N., Nogueira, C. W., & Zeni, G. (2012). Synthesis and antidepressant-like activity of selenophenes obtained via iron (III)–PhSeSePh-mediated cyclization of Z-selenoenynes. Organic & Biomolecular Chemistry, 10(4), 798–807.Google Scholar
  22. 22.
    Prigol, M., Wilhelm, E. A., Schneider, C. C., & Nogueira, C. W. (2008). Protective effect of unsymmetrical dichalcogenide, a novel antioxidant agent, in vitro and an in vivo model of brain oxidative damage. Chemico-Biological Interactions, 176(2–3), 129–136.Google Scholar
  23. 23.
    Tiano, L., Fedeli, D., Santroni, A. M., Villarini, M., Engman, L., & Falcioni, G. (2000). Effect of three diaryl tellurides, and an organoselenium compound in trout erythrocytes exposed to oxidative stress in vitro. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 464(2), 269–277.Google Scholar
  24. 24.
    Fernandes, A. P., & Gandin, V. (2015). Selenium compounds as therapeutic agents in cancer. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(8), 1642–1660.Google Scholar
  25. 25.
    Vieira, A. A., Brandao, I. R., Valença, W. O., de Simone, C. A., Cavalcanti, B. C., Pessoa, C., et al. (2015). Hybrid compounds with two redox centres: Modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. European Journal of Medicinal Chemistry, 101, 254–265.Google Scholar
  26. 26.
    Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T., & Li, Z. (2012). Selenium-containing naphthalimides as anticancer agents: Design, synthesis and bioactivity. Bioorganic & Medicinal Chemistry, 20(8), 2558–2563.Google Scholar
  27. 27.
    Goudgaon, N. M., & Schinazi, R. F. (1991). Activity of acyclic 6-(phenylselenenyl) pyrimidine nucleosides against human immunodeficiency viruses in primary lymphocytes. Journal of Medicinal Chemistry, 34(11), 3305–3309.Google Scholar
  28. 28.
    Prabhu, P., Bag, P. P., Singh, B. G., Hodage, A., Jain, V. K., Iwaoka, M., & Priyadarsini, K. I. (2011). Effect of functional groups on antioxidant properties of substituted selenoethers. Free Radical Research, 45(4), 461–468.Google Scholar
  29. 29.
    Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426–464.Google Scholar
  30. 30.
    Sonnati, M. O., Amigoni, S., de Givenchy, E. P. T., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15(2), 283–306.Google Scholar
  31. 31.
    Sun, D., Yamada, Y., Sato, S., & Ueda, W. (2017). Glycerol as a potential renewable raw material for acrylic acid production. Green Chemistry, 19(14), 3186–3213.Google Scholar
  32. 32.
    Vilkauskaitė, G., Krikštolaitytė, S., Paliulis, O., Rollin, P., Tatibouët, A., & Šačkus, A. (2013). Use of tosylated glycerol carbonate to access N-glycerylated aza-aromatic species. Tetrahedron, 69(18), 3721–3727.Google Scholar
  33. 33.
    Perin, G., Silveira, M. B., Barcellos, A. M., Araujo, D. R., Jacob, R. G., Barcellos, T., & Lenardão, E. J. (2017). Rongalite®/PEG-400 as reducing system in the synthesis of new glycerol-derived selenol esters using anhydrides and bis-(2, 2-dimethyl-1, 3-dioxolanylmethyl) diselenide as substrates. Archive for Organic Chemistry, (part ii), 138–148.Google Scholar
  34. 34.
    Soares, L. K., Silva, R. B., Peglow, T. J., Silva, M. S., Jacob, R. G., Alves, D., & Perin, G. (2016). Selective synthesis of vinyl-or Alkynyl chalcogenides from glycerol and their water-soluble derivatives. ChemistrySelect, 1(9), 2009–2013.Google Scholar
  35. 35.
    Lenardão, E. J., Borges, E. L., Stach, G., Soares, L. K., Alves, D., Schumacher, R. F., et al. (2017). Glycerol as precursor of organoselanyl and organotellanyl alkynes. Molecules, 22(3), 391–402.Google Scholar
  36. 36.
    Nobre, P. C., Borges, E. L., Silva, C. M., Casaril, A. M., Martinez, D. M., Lenardao, E. J., et al. (2014). Organochalcogen compounds from glycerol: synthesis of new antioxidants. Bioorganic & Medicinal Chemistry, 22(21), 6242–6249.Google Scholar
  37. 37.
    Perin, G., Silva, C. M., Borges, E. L., Goulart, H. A., Silva, R. B., Jacob, R. G., Silva, M. S., Alves, D., & Schumacher, R. F. (2016). Selective synthesis of 4-Chalcogenylmethyl-1, 3-dioxolan-2-ones and 1, 3-Bis (organylchalcogenyl) propan-2-ols from 3-O-Tosyl glycerol 1, 2-carbonate. ChemistrySelect, 1(19), 6238–6242.Google Scholar
  38. 38.
    Perin, G., Silva, C. M., Borges, E. L., Duarte, J. E., Goulart, H. A., Silva, R. B., & Schumacher, R. F. (2016). Selective synthesis of 4-thiomethyl-1, 3-dioxolan-2-ones under microwave irradiation using an environmentally benign KF/Al2O3/PEG-400 system. Research on Chemical Intermediates, 42(6), 5873–5885.Google Scholar
  39. 39.
    Seus, N., Saraiva, M. T., Alberto, E. E., Savegnago, L., & Alves, D. (2012). Selenium compounds in click chemistry: copper catalyzed 1, 3-dipolar cycloaddition of azidomethyl arylselenides and alkynes. Tetrahedron, 68(51), 10419–10425.Google Scholar
  40. 40.
    Hunskaar, S., & Hole, K. (1987). The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30(1), 103–114.Google Scholar
  41. 41.
    Oyemitan, I. A., Iwalewa, E. O., Akanmu, M. A., & Olugbade, T. A. (2008). Antinociceptive and antiinflammatory effects of essential oil of Dennettia tripetala G. Baker (Annonaceae) in rodents. African Journal of Traditional, Complementary, and Alternative Medicines, 5(4), 355–362.Google Scholar
  42. 42.
    Woolfe, G., & MacDonald, A. D. (1944). The evaluation of the analgesic action of pethidine hydrochloride (Demerol). Journal of Pharmacology and Experimental Therapeutics, 80(3), 300–307.Google Scholar
  43. 43.
    Beirith, A., Santos, A. R., & Calixto, J. B. (2002). Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Research, 924(2), 219–228.Google Scholar
  44. 44.
    Meymandi, M. S., Keyhanfar, F., Yazdanpanah, O., & Heravi, G. (2015). The role of NMDARs ligands on antinociceptive effects of pregabalin in the tail Flick test. Anesthesiology and Pain Medicine, 5(5), e28968.Google Scholar
  45. 45.
    Sari, M. H. M., Souza, A. C. G., Rosa, S. G., Souza, D., Rodrigues, O. E. D., & Nogueira, C. W. (2014). Contribution of dopaminergic and adenosinergic systems in the antinociceptive effect of p-chloro-selenosteroid. European Journal of Pharmacology, 725, 79–86.Google Scholar
  46. 46.
    Wilhelm, E. A., Jesse, C. R., Bortolatto, C. F., Nogueira, C. W., & Savegnago, L. (2009). Antinociceptive and antiallodynic effects of 3-alkynyl selenophene on different models of nociception in mice. Pharmacology, Biochemistry, and Behavior, 93(4), 419–425.Google Scholar
  47. 47.
    Walsh, R. N., & Cummins, R. A. (1976). The open-field test: a critical review. Psychological Bulletin, 83(3), 482–504.Google Scholar
  48. 48.
    Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56–63.Google Scholar
  49. 49.
    MacKay, E. M., & MacKay, L. L. (1927). The concentration of urea in the blood of normal individuals. The Journal of Clinical Investigation, 4(2), 295–306.Google Scholar
  50. 50.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.Google Scholar
  51. 51.
    Sassa, S. (1982). Delta-aminolevulinic acid dehydratase assay. Enzyme, 28(2-3), 133–145.Google Scholar
  52. 52.
    Bradford, M. M. (1976). A rapid and sensitive method for quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.Google Scholar
  53. 53.
    Lara, R. G., Soares, L. K., Jacob, R. G., Schumacher, R. F., & Perin, G. (2016). Selective synthesis of (Z)-Chalcogenoenynes and (Z, Z)-1, 4-bis-Chalcogenbuta-1, 3-dienes using PEG-400. Journal of the Brazilian Chemical Society, 27(11), 2046–2054.Google Scholar
  54. 54.
    Webber, R., Peglow, T. J., Nobre, P. C., Barcellos, A. M., Roehrs, J. A., Schumacher, R. F., & Perin, G. (2016). 1, 1-Dibromoalkenes as versatile reagents to a transition metal-free and stereoselective synthesis of (E)-1-bromo-1-selenoalkenes and ketene selenoacetals. Tetrahedron Letters, 57(37), 4128–4132.Google Scholar
  55. 55.
    Thurow, S., Webber, R., Perin, G., Lenardão, E. J., & Alves, D. (2013). Glycerol/hypophosphorous acid: An efficient system solvent-reducing agent for the synthesis of 2-organylselanyl pyridines. Tetrahedron Letters, 54(24), 3215–3218.Google Scholar
  56. 56.
    Tassorelli, C., Greco, R., Wang, D., Sandrini, G., & Nappi, G. (2006). Prostaglandins, glutamate and nitric oxide synthase mediate nitroglycerin-induced hyperalgesia in the formalin test. European Journal of Pharmacology, 534(1–3), 103–107.Google Scholar
  57. 57.
    Guimarães, A. G., Quintans, J. S., & Quintans-Júnior, L. J. (2013). Monoterpenes with analgesic activity—a systematic review. Phytotherapy Research, 27(1), 1–15.Google Scholar
  58. 58.
    Shibata, M., Ohkubo, T., Takahashi, H., & Inoki, R. (1989). Modified formalin test: characteristic biphasic pain response. Pain, 38(3), 347–352.Google Scholar
  59. 59.
    Salinas-Abarca, A. B., Avila-Rojas, S. H., Barragán-Iglesias, P., Pineda-Farias, J. B., & Granados-Soto, V. (2017). Formalin injection produces long-lasting hypersensitivity with characteristics of neuropathic pain. European Journal of Pharmacology, 797, 83–93.Google Scholar
  60. 60.
    Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139(2), 267–284.Google Scholar
  61. 61.
    Luo, Z. D. (2004). Pain research: Methods and protocols (Vol. 99). Berlin: Springer Science & Business Media.Google Scholar
  62. 62.
    Mogil, J.S., Wilson, S.G., & Wan, Y. (2001) Assessing nociception in murine subjects. In: Kruger, L. (Ed.) Methods in Pain Research. (pp 11–39). Boca Raton, FL.CRC PressGoogle Scholar
  63. 63.
    Fischer, L. G., Santos, D., Serafin, C., Malheiros, A., Delle Monache, F., Delle Monache, G., et al. (2008). Further antinociceptive properties of extracts and phenolic compounds from Plinia glomerata (Myrtaceae) leaves. Biological and Pharmaceutical Bulletin, 31(2), 235–239.Google Scholar
  64. 64.
    de Sousa Oliveira, F., De Sousa, D. P., & de Almeida, R. N. (2008). Antinociceptive effect of hydroxydihydrocarvone. Biological and Pharmaceutical Bulletin, 31(4), 588–591.Google Scholar
  65. 65.
    Pigatto, G. R., Coelho, I. S., Aquino, R. S., Bauermann, L. F., & Santos, A. R. S. (2017). Light-emitting diode phototherapy reduces nocifensive behavior induced by thermal and chemical noxious stimuli in mice: evidence for the involvement of capsaicin-sensitive central afferent fibers. Molecular Neurobiology, 54(5), 3205–3218.Google Scholar
  66. 66.
    Liu, X. J., White, T. D., & Sawynok, J. (2002). Intraplantar injection of glutamate evokes peripheral adenosine release in the rat hind paw: involvement of peripheral ionotropic glutamate receptors and capsaicin-sensitive sensory afferents. Journal of Neurochemistry, 80(4), 562–570.Google Scholar
  67. 67.
    Beirith, A., Santos, A. R., & Calixto, J. B. (2003). The role of neuropeptides and capsaicin-sensitive fibres in glutamate-induced nociception and paw oedema in mice. Brain Research, 969(1–2), 110–116.Google Scholar
  68. 68.
    Ferreira, J., Santos, A. R., & Calixto, J. B. (1999). Antinociception produced by systemic, spinal and supraspinal administration of amiloride in mice. Life Sciences, 65(10), 1059–1066.Google Scholar
  69. 69.
    Ferreira, J., Santos, A. R., & Calixto, J. B. (1999). The role of systemic, spinal and supraspinal l-arginine–nitric oxide–cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology, 38(6), 835–842.Google Scholar
  70. 70.
    Moore, K. A., Baba, H., & Woolf, C. J. (2002). Gabapentin—actions on adult superficial dorsal horn neurons. Neuropharmacology, 43(7), 1077–1081.Google Scholar
  71. 71.
    Takuwa, H., Matsuura, T., Bakalova, R., Obata, T., & Kanno, I. (2010). Contribution of nitric oxide to cerebral blood flow regulation under hypoxia in rats. The Journal of Physiological Sciences, 60(6), 399–406.Google Scholar
  72. 72.
    Nicoletti, M., Neri, G., Maccauro, G., Tripodi, D., Varvara, G., Saggini, A., Potalivo, G., Castellani, M. L., Fulcheri, M., Rosati, M., Toniato, E., Caraffa, A., Antinolfi, P., Cerulli, G., Pandolfi, F., Galzio, R., Conti, P., & Theoharides, T. C. (2012). Impact and neuropeptide substance Pan inflammatory compound on arachidonic acid compound generation. International Journal of Immunopathology and Pharmacology, 25(4), 849–857.Google Scholar
  73. 73.
    Caruso, C., Durand, D., Watanobe, H., & Lasaga, M. (2006). NMDA and group I metabotropic glutamate receptors activation modulates substance P release from the arcuate nucleus and median eminence. Neuroscience Letters, 393(1), 60–64.Google Scholar
  74. 74.
    Luo, Z. D., & Cizkova, D. (2000). The role of nitric oxide in nociception. Current Review of Pain, 4(6), 459–466.Google Scholar
  75. 75.
    Bruzziches, R., Francomano, D., Gareri, P., Lenzi, A., & Aversa, A. (2013). An update on pharmacological treatment of erectile dysfunction with phosphodiesterase type 5 inhibitors. Expert Opinion on Pharmacotherapy, 14(10), 1333–1344.Google Scholar
  76. 76.
    Chen, J. Q., Zeng, Y. M., Dai, T. J., & Tang, Q. F. (2015). Intrathecal L-arginine reduces the antinociception of sevoflurane in formalin-induced pain in rats. Neuroscience Letters, 590, 156–160.Google Scholar
  77. 77.
    Nogueira, C. W., Zeni, G., & Rocha, J. B. (2004). Organoselenium and organotellurium compounds: toxicology and pharmacology. Chemical Reviews, 104(12), 6255–6286.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Síntese Orgânica Limpa – LASOL, CCQFAUniversidade Federal de Pelotas – UFPelPelotasBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  3. 3.Laboratório de Pesquisa em Farmacologia Bioquímica – LaFarBio, Grupo de Pesquisa em Neurobiotecnologia, CCQFAUniversidade Federal de Pelotas, UFPelPelotasBrazil

Personalised recommendations