Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1460–1474 | Cite as

Utilization of Grape Seed Flour for Antimicrobial Lipopeptide Production by Bacillus amyloliquefaciens C5 Strain

  • Siwar Soussi
  • Rym Essid
  • Julie Hardouin
  • Dorra Gharbi
  • Salem Elkahoui
  • Olfa Tabbene
  • Pascal Cosette
  • Thierry Jouenne
  • Ferid LimamEmail author


An endophytic Bacillus amyloliquefaciens strain called C5, able to produce biosurfactant lipopeptides with a broad antibacterial activity spectrum, has been isolated from the roots of olive tree. Optimization of antibacterial activity was undertaken using grape seed flour (GSF) substrate at 0.02, 0.2, and 2% (w/v) in M9 medium. Strain C5 exhibited optimal growth and antimicrobial activity (MIC value of 60 μg/ml) when incubated in the presence of 0.2% GSF while lipopeptide production culminated at 2% GSF. Thin layer chromatography analysis of lipopeptide extract revealed the presence of at least three active spots at Rf 0.35, 0.59, and 0.72 at 0.2% GSF. Data were similar to those obtained in LB-rich medium. MALDI-TOF/MS analysis of lipopeptide extract obtained from 0.2% GSF substrate revealed the presence of surfactin and bacillomycin D. These results show that GSF could be used as a low-cost culture medium supplement for optimizing the production of biosurfactants by strain C5.


Bacillus amyloliquefaciens Grape seed flour M9 mineral medium Lipopeptide Antimicrobial activity MALDI-TOF/MS 



This work has been financially supported by the “Tunisian Ministry of Higher Education and Scientific Research.” We would like to thank Professor Ezzedine Aouani for valuable discussion and critical reading of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

No studies have been conducted with human participants or animals in this article.

Supplementary material

12010_2018_2885_MOESM1_ESM.doc (1.2 mb)
Fig. S1 (DOC 1198 kb)


  1. 1.
    Meena, K. R., Sharma, A., & Kanwar, S. S. (2017). Microbial lipopeptides and their medical applications. Annals of Pharmacology and Pharmaceutics, 2, 1–5.Google Scholar
  2. 2.
    Wang, D., Li, K., Wang, Y., Yang, Y., & Zhang, J. (2014). Purification and characterization of antifungal lipopeptide from Bacillus amyloliquefaciens BI2. Lecture Notes in Electrical Engineering., 174, 365–375.Google Scholar
  3. 3.
    Aranda, S., Montes-Borrego, M., Jiménez-Díaz, R. M., & Blanca, B. (2011). Microbial communities associated with the root syste of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahlia Landa. Plant and Soil, 343(1-2), 329–345.Google Scholar
  4. 4.
    Kalai-Grami, L., Saidi, S., Bachkouel, S., Ben Slimene, I., Mnari-Hattab, M., Hajlaoui, M. R., & Limam, F. (2014). Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum. Applied Biochemistry and Biotechnology, 174(1), 365–375.Google Scholar
  5. 5.
    Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8(2), e56329.Google Scholar
  6. 6.
    Bell, C. R., Dickie, G. A., Harvey, W. L. G., & Chan, J. W. Y. F. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41(1), 46–53.Google Scholar
  7. 7.
    Arau’jo, J. M., Silva, A. C., & Azevedo, J. L. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Brazilian Archives of Biology and Technology, 43, 447–451.Google Scholar
  8. 8.
    Sessitsch, A. R. B., & Berg, G. (2004). Endophytic bacterial communities of field-grown potato plants and their plant growth promoting and antagonistic abilities. Canadian Journal of Microbiology, 50(4), 239–249.Google Scholar
  9. 9.
    Stolzfus, J. R., So, R., Malarvithi, P. P., & Ladha, J. K. (1997). Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil, 194(1/2), 25–36.Google Scholar
  10. 10.
    Coombs, J. T., & Franco, C. M. M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Applied and Environmental Microbiology, 69(9), 5603–5608.Google Scholar
  11. 11.
    Sette, L. D., Passarini, M. R. Z., Delarmelina, C., Salati, F., & Duarte, M. C. T. (2006). Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World Journal of Microbiology and Biotechnology, 22(11), 1185–1195.Google Scholar
  12. 12.
    Kefi, A., Ben Slimene, I., Karkouch, I., Rihouey, C., Azaeiz, S., Bejaoui, M., Belaid, R., Cosette, P., Jouenne, T., & Limam, F. (2015). Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World Journal of Microbiology and Biotechnology, 31(12), 1967–1976.Google Scholar
  13. 13.
    Chen, H., Wang, L., Su, C. X., Gong, G. H., Wang, P., & Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology, 47(3), 180–186.Google Scholar
  14. 14.
    Delcambe, L., Peypoux, F., Besson, F., Guinand, M., & Michel, G. (1977). Structure of iturin and iturin-like substances. Biochemical Society Transactions, 5(4), 1122–1124.Google Scholar
  15. 15.
    Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31(3), 488–494.Google Scholar
  16. 16.
    Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Fengycin a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis. The Journal of Antibiotics, 39(7), 888–901.Google Scholar
  17. 17.
    Tabbene, O., Kalai, L., Ben Slimene, I., Karkouch, I., Elkahoui, S., Gharbi, A., Cosette, P., Mangoni, M. L., Jouenne, T., & Limam, F. (2011). Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiology Letters, 316(2), 108–114.Google Scholar
  18. 18.
    Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., & Korpole, S. (2013). Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express, 3(1), 2.Google Scholar
  19. 19.
    Seydlová, G., & Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Central European Journal of Medicine, 3, 123–133.Google Scholar
  20. 20.
    Yuan, H., Chiang, C. Y., Cheng, J., Salzmann, V., & Yamashita, Y. (2012). Regulation of cyclin A localization downstream of Par-1 function is critical for the centrosome orientation checkpoint in Drosophila male germline stem cells. Developmental Biology, 361(1), 57–67.Google Scholar
  21. 21.
    Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H., & Thonart, P. (2001). Influence of culture conditions on lipopeptide production by Bacillus subtilis. Applied Biochemistry and Biotechnology, 91, 551–561.Google Scholar
  22. 22.
    Monteiro, F. P., de Medeiros, F. H. V., Ongena, M., Franzil, L., de Souza, P. E., & de Souza, J. T. (2016). Effect of temperature, pH and substrate composition on production of lipopeptides by Bacillus amyloliquefaciens 629. African Journal of Microbiology Research, 10, 1506–1512.Google Scholar
  23. 23.
    Gudiña, E. J., Fernandes, E. C., Rodrigues, A. I., Teixeira, J. A., & Rodrigues, L. R. (2015). Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 6, 59.Google Scholar
  24. 24.
    Sousa, E. C., Uchoa-Thomaz, A. M. A., Carioca, J. O. B., de Morais, S. M., de Lima, A., Martins, C. G., Alexandrino, C. D., Ferreira, P. A. T., Rodrigues, A. L. M., Rodrigues, S. P., Silva, J. N., & Rodrigues, L. L. (2014). Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Science and Technology, 34(1), 135–142.Google Scholar
  25. 25.
    Mokni, M., Hamlaoui, S., Karkouch, I., Amri, M., Marzouki, L., Limam, F., & Aouani, E. (2013). Resveratrol provides cardioprotection after ischemia/reperfusion injury via modulation of antioxidant enzyme activities. Iranian Journal of Pharmaceutical Research, 12(4), 867–875.Google Scholar
  26. 26.
    Turki, K., Charradi, K., Boukhalfa, H., Monia, B., Limam, F., & Aouani, E. (2016). Grape seed powder improves renal failure of chronic kidney disease patients. EXCLI Journal, 15, 424–433.Google Scholar
  27. 27.
    Charradi, K., Elkahoui, S., Karkouch, I., Limam, F., Ben Hassine, F., El May, M. V., & Aouani, E. (2014). Protective effect of grape seed and skin extract diet-induced liver steatosis and zinc depletion in rat. Digestive Diseases and Sciences, 59, 1768–1778.Google Scholar
  28. 28.
    Safwen, K., Selima, S., Mohamed, E., Ferid, L., Pascal, C., Mohamed, A., Ezzedine, A., & Meherzia, M. (2015). Protective effect of grape seed and skin extract on cerebral ischemia in rat: Implication of transition metals. International Journal of Stroke, 10(3), 415–424.Google Scholar
  29. 29.
    Pardo, A., Perona, M. A., & Pardo, J. (2007). Indoor composting of vine by-products to produce substrates for mushroom cultivation. Spanish Journal of Agricultural Research, 5(3), 417–424.Google Scholar
  30. 30.
    Binzer, L., Brinsko, R.,Cha, J., Chen, Z., Green, S., Grob, K., Hao, J., Hitz, C., Li, L., Swamy, S., Wolf, M., Xu, M. & Yanik, M. (2011). Incorporating grape seed antioxidants into a functional food model. MSc Thesis, College Park, University of Maryland, pp. 1–154.Google Scholar
  31. 31.
    Mokni, M., Amri, M., Limam, F., & Aouani, E. (2017). Effect of grape seed and skin supplement on milk yield and composition of dairy ewes. Tropical Animal Health and Production, 49(1), 131–137.Google Scholar
  32. 32.
    Fisher, P. J., Petrini, O., & Lazpin, S. H. M. (1992). The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). The New Phytologist, 122, 299–305.Google Scholar
  33. 33.
    Boone, D. R., Garrity, G. M., Castenholz, R. W., Brenner, D. J., Krieg, N. R., & Staley, J. T. (2001). “Genus Bacillus”, in Bergey’s manual of systematic bacteriology: The Firmicutes (pp. 121–128). NewYork: Springer.Google Scholar
  34. 34.
    Schaeffer, A. B. & M. D. Fulton. (1933). A simplified method for staining endospores. Science 77, 194.Google Scholar
  35. 35.
    Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297–1303.Google Scholar
  36. 36.
    Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.Google Scholar
  37. 37.
    Naeini, A., Khosravi, A. R., Chitsaz, M., Shokri, H., & Kamlnejad, M. (2009). Anti-Candida albicans activity of some Iranian plants used in traditional medicine. The Journal de Mycologie Médicale, 19(3), 168–172.Google Scholar
  38. 38.
    Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., & Chi, Y. T. (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 97(5), 942–949.Google Scholar
  39. 39.
    Smânia Jr., A., Valgas, C., Souza, S. M., & Smânia, E. F. A. (2007). Screening, methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369–380.Google Scholar
  40. 40.
    Kalai, L., Ben Slimane, I., Mnari-Hattab, M., Rezgui, S., Aouani, M. A., Hajlaoui, M. R., & Limam, F. (2013). Protective effect of Bacillus amyloliquefaciens against infections of Citrus aurantium seedlings by Phoma tracheiphila. World Journal of Microbiology and Biotechnology, 30, 529–538.Google Scholar
  41. 41.
    Yu, G. Y., Sinclair, J. B., Hartman, G. L., & Bertagnolli, B. L. (2002). Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 34(7), 955–963.Google Scholar
  42. 42.
    Tabbene, O., Slimene, B., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., & Limam, F. (2009). Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Applied Biochemistry and Biotechnology, 157(3), 407–419.Google Scholar
  43. 43.
    Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266.Google Scholar
  44. 44.
    Müller, H., Berg, C., Landa, B. B., Auerbach, A., Moissl-Eichinger, C., & Berg, G. (2015). Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Frontiers in Microbiology, 6, 138.Google Scholar
  45. 45.
    Arguelles–Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63–74.Google Scholar
  46. 46.
    Kalai-Grami, L., Karkouch, I., Naili, O., Ben Slimene, I., Elkahoui, S., Ben Zekri, R., Touati, I., Mnari-Hattab, M., Hajlaoui, M. R., & Limam, F. (2016). Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. Journal of Basic Microbiology, 56(8), 864–871.Google Scholar
  47. 47.
    Jasim, B., Sreelakshmi, S., Mathew, J., & Radhkrishman, E. K. (2016). Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech, 6, 187–197.Google Scholar
  48. 48.
    Fernandes, P. A. V., de Arruda, I. R., dos Santos, A. F. A. B., de Araújo, A. A., Souto Maior, A. M., & Ximenes, E. A. (2007). Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology, 38, 704–709.Google Scholar
  49. 49.
    Singh, P., & Cameotra, S. S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends in Biotechnology, 22(3), 142–146.Google Scholar
  50. 50.
    Ndlovu, T., Rautenbach, M., Vosloo, J. A., Khan, S., & Khan, W. (2017). Characterization and antimicrobial activity of biosurfactants extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a waste water treatment plant. AMB Express, 7(1), 108.Google Scholar
  51. 51.
    Kumar, A. P., Janardhan, A., Viswanath, B., Monika, K., Jung, J. Y., & Narasimha, G. (2016). Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech, 6, 43.Google Scholar
  52. 52.
    Sharma, D., Ansari, M. J., Gupta, S., Al Ghamdi, A., Pruthi, P., & Pruthi, V. (2015). Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur Journal of Microbiology, 8, e21257.Google Scholar
  53. 53.
    Sharma, D., & Saharan, B. S. (2016). Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus. Biotechnology Reports, 11, 27–35.Google Scholar
  54. 54.
    Das, P., Mukherjee, S., & Sen, R. (2008). Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology, 104(6), 1675–1684.Google Scholar
  55. 55.
    Dimkić, I., Stanković, S., Nišavić, M., Petković, M., Ristivojević, P., Fira, D., & Berić, T. (2017). The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Frontiers in Microbiology, 8, 925.Google Scholar
  56. 56.
    Geissler, M., Oellig, C., Moss, K., Schwack, W., Henkel, M., & Hausmann, R. (2017). High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 1044-1045, 214–224.Google Scholar
  57. 57.
    Gordillo, M. A. & Maldonado, M. C. (2012). Purification of peptides from Bacillus strains with biological activity. In: Dhanarasu S. Chromatogr. Appl. 11. pp. 201–224.Google Scholar
  58. 58.
    Al-Ajlani, M. M., Sheikh, M. A., Ahmad, Z., & Hasnain, S. (2007). Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories, 6, 171–178.Google Scholar
  59. 59.
    Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.Google Scholar
  60. 60.
    Sabaté, D. C., & Audisio, M. C. (2013). Inhibitory activity of surfactin produced by different Bacillus subtilis subsp. Subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiological Research, 168(3), 125–129.Google Scholar
  61. 61.
    Bacon, C. W., Hinton, D. M., Mitchell, T. R., Snook, M. E., & Olubajo, B. (2012). Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biological Control, 62, 1–9.Google Scholar
  62. 62.
    Dhanarajan, G., Rangarajan, V., Sridhar, P. R., & Sen, R. (2016). Development and scale-up of an efficient and green process for HPLC purification of antimicrobial homologues of commercially important microbial lipopeptides. ACS Sustainable Chemistry & Engineering, 4(12), 6638–6646.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Siwar Soussi
    • 1
    • 2
  • Rym Essid
    • 1
  • Julie Hardouin
    • 3
    • 4
  • Dorra Gharbi
    • 1
    • 2
  • Salem Elkahoui
    • 1
  • Olfa Tabbene
    • 1
  • Pascal Cosette
    • 3
    • 4
  • Thierry Jouenne
    • 3
    • 4
  • Ferid Limam
    • 1
    Email author
  1. 1.Laboratory of Bioactive SubstancesCenter of Biotechnology of Borj CedriaHammam-lifTunisia
  2. 2.University of CarthageAmilcarTunisia
  3. 3.Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRSNormandie UniversityMont-Saint-AignanFrance
  4. 4.Proteomic Platform PISSAROMont-Saint-AignanFrance

Personalised recommendations