Advertisement

pH-Based Detection of Target Analytes in Diluted Serum Samples Using Surface Plasmon Resonance Immunosensor

  • Dharitri Rath
  • Satyendra Kumar
  • Siddhartha Panda
Article
  • 18 Downloads

Abstract

Detection of minute quantities of target antigens in serum samples (consisting of a mixture of proteins/biomolecules) can be achieved by enhancement of the capture efficiencies of heterogeneous immunosensors. An important process parameter which affects the capture of target analytes in such immunosensors is the pH of the solution as the target proteins present in the serum samples are charged molecules. Here, we investigated the capture of prostate-specific antigens (PSAs), first in a mixed-analyte system wherein the solution contained two other non-specific proteins along with the target analyte, using the surface plasmon resonance spectroscopy. There are no reports on the detection of antigens in a mixed system based on the optimization of the pH values of the carrier fluid, and this is the motivation of the present work. Further, we studied interference effects caused by the presence of these non-specific proteins in the mixed-analyte systems by artificially increasing the ratio of the interfering proteins to that of the target protein. Eventually PSA spiked into the rabbit serum samples was captured through the optimization of the pH of the solution. We could detect PSA in the serum samples when diluted to 100 times or more, where the amounts of other interfering proteins were ~ 66 times that of the amount of PSA. This study proposes a heterogeneous immunosensor to detect the target analytes in the diluted serum samples by tuning pH the of solution mixture, which can be utilized to detect disease biomarkers in serum samples.

Keywords

Mixed analyte Surface plasmon resonance Serum Prostate specific antigens 

Notes

Funding information

Financial support was provided by the DST Science and Engineering Research Board, India (Grant No. SB/S3/CE/055/2013).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kelloff, G. J., Boone, C. W., Crowell, J. A., Nayfield, S. G., Hawk, E., Malone, W. F., Steele, V. E., Lubet, R. A., & Sigman, C. C. (1996). Risk biomarkers and current strategies for cancer chemoprevention. Journal of Cellular Biochemistry. Supplement, 25, 1–14.CrossRefGoogle Scholar
  2. 2.
    Fu, Z., Yang, Z., Tang, J., Liu, H., Yan, F., & Ju, H. (2007). Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay. Analytical Chemistry, 79(19), 7376–7382.CrossRefGoogle Scholar
  3. 3.
    Zhang, A., Sun, H., Yan, G., Han, Y., & Wang, X. (2013). Serum proteomics in biomedical research: a systematic review. Applied Biochemistry and Biotechnology, 170(4), 774–786.CrossRefGoogle Scholar
  4. 4.
    Rath, D., & Panda, S. (2015). Contribution of rotational diffusivity towards the transport of antigens in heterogeneous immunosensors. Analyst, 140(19), 6579–6587.CrossRefGoogle Scholar
  5. 5.
    Rath, D., & Panda, S. (2016). Correlation of capture efficiency with the geometry, transport, and reaction parameters in heterogeneous immunosensors. Langmuir, 32(5), 1410–1418.CrossRefGoogle Scholar
  6. 6.
    Kumar, S., Ch, R., Rath, D., & Panda, S. (2011). Densities and orientations of antibodies on nano-textured silicon surfaces. Materials Science and Engineering: C, 31(2), 370–376.CrossRefGoogle Scholar
  7. 7.
    Rath, D., & Panda, S. (2015). Enhanced capture efficiencies of antigens in immunosensors. Chemical Engineering Journal, 260, 657–670.CrossRefGoogle Scholar
  8. 8.
    Ray, S., Mehta, G., & Srivastava, S. (2010). Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics, 10(4), 731–748.CrossRefGoogle Scholar
  9. 9.
    Cao, Z., Li, H., Lau, C., & Zhang, Y. (2011). Cross-talk-free simultaneous fluoroimmunoassay of two biomarkers based on dual-color quantum dots. Analytica Chimica Acta, 698(1-2), 44–50.CrossRefGoogle Scholar
  10. 10.
    Li, C., Fu, Z., Li, Z., Wang, Z., & Wei, W. (2011). Cross-talk-free multiplexed immunoassay using a disposable electrochemiluminescent immunosensor array coupled with a non-array detector. Biosensors & Bioelectronics, 27(1), 141–147.CrossRefGoogle Scholar
  11. 11.
    Wei, W., Zhang, C., Qian, J., & Liu, S. (2011). Multianalyte immunoassay chip for detection of tumor markers by chemiluminescent and colorimetric methods. Analytical and Bioanalytical Chemistry, 401(10), 3269–3274.CrossRefGoogle Scholar
  12. 12.
    Gnedenko, O. V., Mezentsev, Y. V., Molnar, A. A., Lisitsa, A. V., Ivanov, A. S., & Archakov, A. I. (2013). Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Analytica Chimica Acta, 759, 105–109.CrossRefGoogle Scholar
  13. 13.
    Mukherjee, M. D., Solanki, P. R., Sumana, G., Manaka, T., Iwamoto, M., & Malhotra, B. D. (2014). Thiol modified chitosan self-assembled monolayer platform for nucleic acid biosensor. Applied Biochemistry and Biotechnology, 174, 1201–1213.CrossRefGoogle Scholar
  14. 14.
    Lai, G., Wu, J., Leng, C., Ju, H., & Yan, F. (2011). Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase-functionalized silica nanosphere tags. Biosensors & Bioelectronics, 26(9), 3782–3787.CrossRefGoogle Scholar
  15. 15.
    Sarkar, T., Gao, Y., & Mulchandani, A. (2013). Carbon nanotubes-based label-free affinity sensors for environmental monitoring. Applied Biochemistry and Biotechnology, 170(5), 1011–1025.CrossRefGoogle Scholar
  16. 16.
    Tian, J., Zhou, L., Zhao, Y., Wang, Y., Peng, Y., & Zhao, S. (2012). Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta, 92, 72–77.CrossRefGoogle Scholar
  17. 17.
    Kong, F.-Y., Xu, B.-Y., Xu, J.-J., & Chen, H.-Y. (2013). Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosensors & Bioelectronics, 39(1), 177–182.CrossRefGoogle Scholar
  18. 18.
    Pei, X., Chen, B., Li, L., Gao, F., & Jiang, Z. (2010). Multiplex tumor marker detection with new chemiluminescent immunoassay based on silica colloidal crystal beads. Analyst, 135(1), 177–181.CrossRefGoogle Scholar
  19. 19.
    Guo, Z., Hao, T., Du, S., Chen, B., Wang, Z., Li, X., & Wang, S. (2013). Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge. Biosensors & Bioelectronics, 44, 101–107.CrossRefGoogle Scholar
  20. 20.
    Rich, R. L., & Myszka, D. G. (2000). Advances in surface plasmon resonance biosensor analysis. Current Opinion in Biotechnology, 11(1), 54–61.CrossRefGoogle Scholar
  21. 21.
    Piliarik, M., Vaisocherová, H., & Homola, J. (2009). Surface plasmon resonance biosensing BT—biosensors and biodetection. In A. Rasooly & K. E. Herold (Eds.), (pp. 65–88). Totowa: Humana Press.Google Scholar
  22. 22.
    Nagai, H., Tomioka, K., & Okumura, S. (2018). Optimal conditions for the asymmetric polymerase chain reaction for detecting food pathogenic bacteria using a personal SPR sensor. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-018-2819-y.
  23. 23.
    Antiochia, R., Bollella, P., Favero, G., & Mazzei, F. (2016). Nanotechnology-based surface plasmon resonance affinity biosensors for in vitro diagnostics. International Journal of Analytical Chemistry, 16, 1–15.CrossRefGoogle Scholar
  24. 24.
    Yu, F., Persson, B., Löfås, S., & Knoll, W. (2004). Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. Analytical Chemistry, 76(22), 6765–6770.CrossRefGoogle Scholar
  25. 25.
    Choi, J.-W., Kang, D.-Y., Jang, Y.-H., Kim, H.-H., Min, J., & Oh, B.-K. (2008). Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle–antibody complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314, 655–659.CrossRefGoogle Scholar
  26. 26.
    Uludag, Y., & Tothill, I. E. (2012). Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Analytical Chemistry, 84(14), 5898–5904.CrossRefGoogle Scholar
  27. 27.
    Jung, J., Na, K., Lee, J., Kim, K.-W., & Hyun, J. (2009). Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface. Analytica Chimica Acta, 651(1), 91–97.CrossRefGoogle Scholar
  28. 28.
    Frey, B. L., & Corn, R. M. (1996). Covalent attachment and derivatization of poly(l-lysine) monolayers on gold surfaces as characterized by polarization−modulation FT-IR spectroscopy. Analytical Chemistry, 68(18), 3187–3193.CrossRefGoogle Scholar
  29. 29.
    Nador, J., Orgovan, N., Fried, M., Petrik, P., Sulyok, A., Ramsden, J. J., Korosi, L., & Horvath, R. (2014). Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips. Colloids and Surfaces. B, Biointerfaces, 122, 491–497.CrossRefGoogle Scholar
  30. 30.
    Moldovan, C., Mihailescu, C., Stan, D., Ruta, L., Iosub, R., Gavrila, R., Purica, M., & Vasilica, S. (2009). Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection. Applied Surface Science, 255(22), 8953–8959.CrossRefGoogle Scholar
  31. 31.
    Sankiewicz, A., Romanowicz, L., Pyc, M., Hermanowicz, A., & Gorodkiewicz, E. (2018). SPR imaging biosensor for the quantitation of fibronectin concentration in blood samples. Journal of Pharmaceutical and Biomedical Analysis, 150, 1–8.CrossRefGoogle Scholar
  32. 32.
    Liu, N., & Ma, Z. (2013). Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosensors & Bioelectronics, 51C, 184–190.Google Scholar
  33. 33.
    Wang, Y., Li, X., Cao, W., Li, Y., Li, H., Du, B., & Wei, Q. (2014). Facile fabrication of an ultrasensitive sandwich-type electrochemical immunosensor for the quantitative detection of alpha fetoprotein using multifunctional mesoporous silica as platform and label for signal amplification. Talanta, 129, 411–416.CrossRefGoogle Scholar
  34. 34.
    Chen, Z., Lei, Y., & Chen, X. (2012). Immunoassay for serum alpha-fetoprotein using silver nanoparticles and detection via resonance light scattering. Microchimica Acta, 179(3-4), 241–248.CrossRefGoogle Scholar
  35. 35.
    Manning, P. J. (1994). The biology of the laboratory rabbit (2nd ed.). San Diego: Academic Press, Inc.Google Scholar
  36. 36.
    Binette, J. P., MacNair, M. B., & Calkins, E. (1965). Fractionation and characterization of normal rabbit plasma proteins. The Biochemical Journal, 94, 143 LP–143149.CrossRefGoogle Scholar
  37. 37.
    Porter, W. H., Haver, V. M., & Bush, B. A. (1984). Effect of protein concentration on the determination of digoxin in serum by fluorescence polarization immunoassay. Clinical Chemistry, 30(11), 1826–1829.PubMedGoogle Scholar
  38. 38.
    Rupić, V., Skrlin, J., Mužic, S., Šerman, V., Stipić, N., & Bačar-Huskić, L. (1999). Protein and fat concentrations in the blood serum of rabbits fed different quantities of dried olive cake. Acta Veterinaria, 68(2), 91–98.CrossRefGoogle Scholar
  39. 39.
    Phillips, K. S., Han, J. H., & Cheng, Q. (2007). Development of a “membrane cloaking” method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Analytical Chemistry, 79(3), 899–907.CrossRefGoogle Scholar
  40. 40.
    Bolduc, O. R., & Masson, J.-F. (2008). Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir, 24(20), 12085–12091.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKanpurIndia
  2. 2.Samtel Centre for Display TechnologiesIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations