Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1238–1254 | Cite as

Enhancing Expression of 3-Ketosteroid-9α-Hydroxylase Oxygenase, an Enzyme with Broad Substrate Range and High Hydroxylation Ability, in Mycobacterium sp. LY-1

  • Hui Li
  • Xiangdong Wang
  • Longfei Zhou
  • Yang Ma
  • Wanjuan Yuan
  • Xiaomei Zhang
  • Jinsong ShiEmail author
  • Zhenghong Xu


3-Ketosteroid-9α-hydroxylase (KSH) consists of two protein systems, KshA and KshB, and is a key enzyme in microbial degradation pathway of natural sterols. 9α-Hydroxy-4-androstene-3,17-dione (9α-OH-AD) is a valuable steroid pharmaceutical intermediate. The expression of a 3-ketosteroid-9α-hydroxylase oxygenase (KshA1) with a broad substrate range and high hydroxylation ability was enhanced in Mycobacterium sp. LY-1 to improve the yield of 9α-OH-AD. Through whole-genome sequence mining and homologous comparison, the putative genes (kshA1 and kshB) in wild strain LY-1 were firstly identified. Then they were heterogeneously co-expressed in Escherichia coli BL21. The transformation results of recombinant BL21-KshA1/B demonstrated KshA1/B had high hydroxylation ability to AD. Moreover, substrate preference analysis suggested that KshA1LY-1 had a broad substrate range. After enhancing expression of kshA1 and kshB in the strain LY-1, the maximum productivity of 9α-OH-AD in recombinant LY-1-KshA1/B reached 0.064 g/L/h in a 5-L stirred fermenter.


Mycobacterium sp. LY-1 3-Ketosteroid-9α-hydroxylase oxygenase Hydroxylation 9α-OH-AD 


Funding Information

This research was financially supported by the National 863 High Tech Program of China (No. 2011AA02A211), Postgraduate Research & Practice Innovation Program of Jiangsu Provence (SJCX17_0502), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B146).

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that there is no conflict of interest.


  1. 1.
    Fernandes, P., & Cabral, J. (2007). Phytosterols: applications and recovery methods. Bioresource Technology, 98(12), 2335–2350.CrossRefGoogle Scholar
  2. 2.
    Nicolaou, S., Gaida, S., & Papoutsakis, E. (2010). A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 12, 307–331.CrossRefGoogle Scholar
  3. 3.
    Donova, M. V., Dovbnya, D. V., & Koshcheyenko, K. A. (1996). Modified CDs-mediated enhancement of microbial sterol sidechain degradation. Netherlands: Springer.CrossRefGoogle Scholar
  4. 4.
    Marsheck, W. J., Kraychy, S., & Muir, R. D. (1972). Microbial degradation of sterols. Applied Microbiology 23(1), 72–77.Google Scholar
  5. 5.
    Zhang, W., Shao, M., Rao, Z., Xu, M., Zhang, X., Yang, T., Li, H., & Xu, Z. (2013). Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. Journal of Steroid Biochemistry and Molecular Biology, 135, 36–42.CrossRefGoogle Scholar
  6. 6.
    Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource Technology, 99(15), 6725–6737.CrossRefGoogle Scholar
  7. 7.
    Donova, M. V., Gulevskaya, S. A., Dovbnya, D. V., & Puntus, I. F. (2005). Mycobacterium sp. mutant strain producing 9α-hydroxyandrostenedione from sitosterol. Applied Microbiology and Biotechnology, 67(5), 671–678.CrossRefGoogle Scholar
  8. 8.
    Angelova, B., Mutafov, S., Avramova, T., & Stefanova, L. (2005). Effect of nitrogen source in cultivation medium on the 9α-hydroxylation of pregnane steroids by resting Rhodococcus sp. cells. Biotechnology and Biotechnological Equipment, 19(3), 113–116.CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Shen, Y., Qiao, Y., Su, L., Li, C., & Wang, M. (2016). The effect of 3-ketosteroid-Δ1-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269. Journal of Industrial Microbiology and Biotechnology, 43(9), 1303–1311.CrossRefGoogle Scholar
  10. 10.
    Mohn, W. W., Wilbrink, M. H., Casabon, I., Stewart, G. R., Liu, J., Van, D. G. R., & Eltis, L. D. (2012). Gene cluster encoding cholate catabolism in Rhodococcus spp. Journal of Bacteriology, 194(24), 6712–6719.CrossRefGoogle Scholar
  11. 11.
    Ahmad, S., Roy, P. K., Basu, S. K., & Johri, B. N. (1993). Cholesterol side-chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133. Indian Journal of Experimental Biology, 31, 319–322.Google Scholar
  12. 12.
    Jekkel Nee, B. A., Albrecht, K., Ambrus, G., Lang, T., Szabo, I. M., Ilkoy, E., Konczol, K., Moravcsik, I., Hantos, G., & Simonovits, E. (1991). Microbiological process for preparing 9α-hydroxy-4-androstene-3,17-dione. US.Google Scholar
  13. 13.
    Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Applied Microbiology and Biotechnology, 94(6), 1423–1447.CrossRefGoogle Scholar
  14. 14.
    García, J. L., Uhía, I., & Galán, B. (2012). Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 5(6), 679–699.CrossRefGoogle Scholar
  15. 15.
    Uhía, I., Galán, B., Kendall, S. L., Stoker, N. G., & García, J. L. (2012). Cholesterol metabolism in Mycobacterium smegmatis. Environmental Microbiology Reports, 4(2), 168–182.CrossRefGoogle Scholar
  16. 16.
    Yuan, J., Chen, G., Cheng, S., Ge, F., Qiong, W., Li, W., & Li, J. (2015). Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805. Chinese Journal of Biotechnology, 31, 523–533.Google Scholar
  17. 17.
    Szentirmai, A. (1990). Microbial physiology of sidechain degradation of sterols. Journal of Industrial Microbiology, 6(2), 101–115.CrossRefGoogle Scholar
  18. 18.
    Capyk, J. K., Casabon, I., Gruninger, R., Strynadka, N. C., & Eltis, L. D. (2011). Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. Journal of Biological Chemistry, 286(47), 40717–40724.CrossRefGoogle Scholar
  19. 19.
    Sukhodolskaya, G. V., Nikolayeva, V. M., Khomutov, S. M., & Donova, M. V. (2007). Steroid-1-dehydrogenase of Mycobacterium sp. VKM Ac-1817D strain producing 9α-hydroxy-androst-4-ene-3,17-dione from sitosterol. Applied Microbiology and Biotechnology, 74(4), 867–873.CrossRefGoogle Scholar
  20. 20.
    Geize, R. V. D., Hessels, G. I., Gerwen, R. V., Meijden, P. V. D., & Dijkhuizen, L. (2002). Molecular and functional characterization of kshA and kshB , encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Molecular Microbiology, 45, 1007–1018.CrossRefGoogle Scholar
  21. 21.
    Hu, Y., Geize, R. V. D., Besra, G. S., Gurcha, S. S., Liu, A., Rohde, M., Singh, M., & Coates, A. (2010). 3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Molecular Microbiology, 75(1), 107–121.CrossRefGoogle Scholar
  22. 22.
    Mahato, S., & Garai, S. (1997). Advances in microbial steroid biotransformation. Steroids, 62(4), 332–345.CrossRefGoogle Scholar
  23. 23.
    Geize, R. V. D., Hessels, G. I., Gerwen, R. V., Meijden, P. V. D., & Dijkhuizen, L. (2001). Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiology Letters, 205(2), 197–202.CrossRefGoogle Scholar
  24. 24.
    Andor, A., Jekkel, A., Hopwood, D. A., Jeanplong, F., Ilky, V., Knya, A., Kurucz, I., & Ambrus, G. (2006). Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2 155. Applied and Environmental Microbiology, 72(10), 6554–6559.CrossRefGoogle Scholar
  25. 25.
    Petrusma, M., Dijkhuizen, L., & Geize, R. V. D. (2009). Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9α-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Applied and Environmental Microbiology, 75(16), 5300–5307.CrossRefGoogle Scholar
  26. 26.
    Fan, S., Wei, W., Wang, F., & Wei, D. (2009). Cloning, heterologous expression and purification of a 3-ketosteroid-9α-hydroxylase (KSH) from Mycobacterium sp. NwIB-01. Chinese Journal of Biotechnology, 25, 2014–2021.Google Scholar
  27. 27.
    Petrusma, M., Hessels, G., Dijkhuizen, L., & Geize, R. V. D. (2011). Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. Journal of Bacteriology, 193(15), 3931–3940.CrossRefGoogle Scholar
  28. 28.
    Ma, Y., Wang, X., Wang, M., Li, H., Shi, J., & Xu, Z. (2017). Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17-dione transforming strains from phytosterols and their conversion process optimization. Chinese Journal of Biotechnology, 33, 1198–1206.Google Scholar
  29. 29.
    Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9(4), 299–306.CrossRefGoogle Scholar
  30. 30.
    Laemmli, U. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  31. 31.
    Dong, Y., Geng, Y., Li, L., Li, X., Yan, X., Fang, Y., Li, X., Dong, S., Liu, X., & Li, X. (2015). Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Experimental Medicine, 212(2), 235–252.CrossRefGoogle Scholar
  32. 32.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.CrossRefGoogle Scholar
  33. 33.
    Yao, K., Xu, L., Wang, F., & Wei, D. (2014). Characterization and engineering of 3-ketosteroid-Δ1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metabolic Engineering, 24, 181–191.CrossRefGoogle Scholar
  34. 34.
    Capyk, J. K., D'Angelo, I., Strynadka, N. C., & Eltis, L. D. (2009). Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. Journal of Biological Chemistry, 284(15), 9937–9946.CrossRefGoogle Scholar
  35. 35.
    Yao, K. (2014). Investigation into the molecular mechanism of microbial sterol degradation and its metabolic engineering for the production of steroid pharmaceutical precursors. PhD Thesis, East China University of Science and Technology, Shanghai, China.Google Scholar
  36. 36.
    Petrusma, M., Dijkhuizen, L., & Van, D. G. R. (2012). Structural features in the KshA terminal oxygenase protein that determine substrate preference of 3-ketosteroid 9α-hydroxylase enzymes. Journal of Bacteriology, 194(1), 115–121.CrossRefGoogle Scholar
  37. 37.
    Wang, G. E., Chen, Y. Q., Fan, Y. X., Li, J. F., & Chen, X. L. (2016). Enhancement expression of 3-phytosterone-9α-hydroxylase in Mycobacterium. Pharmaceutical Biotechnology, 23, 381–384.Google Scholar
  38. 38.
    Yao, K., Wang, F. Q., Zhang, H. C., & Wei, D. Z. (2013). Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metabolic Engineering, 15, 75–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hui Li
    • 1
  • Xiangdong Wang
    • 1
  • Longfei Zhou
    • 1
  • Yang Ma
    • 1
  • Wanjuan Yuan
    • 1
  • Xiaomei Zhang
    • 1
  • Jinsong Shi
    • 1
    Email author
  • Zhenghong Xu
    • 1
    • 2
  1. 1.School of Pharmaceutical ScienceJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.National Engineering Laboratory for Cereal Fermentation Technology, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations