Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1193–1203 | Cite as

Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration

  • Shahla Khalili
  • Saied Nouri KhorasaniEmail author
  • Seyed Mohammad Razavi
  • Batool Hashemibeni
  • Ali Tamayol
Article

Abstract

Treatments of skin injuries caused by trauma and diseases are among the most considerable medical problems. The use of scaffolds that can cover the wound area and support cellular ingrowth has shown great promise. However, mimicking the physicochemical properties of the native skin extracellular matrix (ECM) is essential for the successful integration of these scaffolds. Elastin has been known as the second main protein-based component of the native skin ECM. In this research, scaffolds containing gelatin, cellulose acetate, and elastin were fabricated using electrospinning. Subsequently, the effects of soluble elastin on the physical, mechanical, and biological properties of the prepared scaffolds were studied. The results confirmed that the presence of elastin in the composition changed the fiber morphology from straight to ribbon-like structure and decreased the swelling ratio and degradation rate of the scaffold. In vitro experiments showed that elastin-containing scaffolds supported the attachment and proliferation of fibroblast cells. Overall, the obtained results suggest the ternary blend of gelatin, cellulose acetate, and elastin as a good candidate for skin tissue engineering.

Keywords

Skin tissue engineering Elastin Gelatin Cellulose acetate Scaffolds 

Notes

Acknowledgments

The authors would like to thank Research Institute in Biotechnology and Bioengineering at Isfahan University of Technology and Dental Sciences Research Center at Isfahan University of Medical Sciences.

Funding information

This project received financial support from Bonyad Melli Nokhbegan (BMN).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Thomas, R., Soumya, K. R., Mathew, J., & Radhakrishnan, E. K. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176(8), 2213–2224.CrossRefGoogle Scholar
  2. 2.
    El-Aassar, M. R. E. f., El-Deeb, G. F., Shokry Hassan, N. M., & Mo, H. (2016). X. Applied Biochemistry and Biotechnology, 178(8), 1488–1502.CrossRefGoogle Scholar
  3. 3.
    Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., & Schenke-Layland, K. (2011). Advanced Drug Delivery Reviews, 128, 352–366.CrossRefGoogle Scholar
  4. 4.
    Khalili, S. N. K., Razavi, S., Hashemi Beni, M., Heydari, B., & Tamayol, F. A. (2018). Journal of Biomedical Materials Research. Part A, 106(2), 370–376.CrossRefGoogle Scholar
  5. 5.
    Khalili, S., Nouri Khorasani, S., Saadatkish, N., & Khoshakhlagh, K. (2016). Polymer Science Series A, 58(3), 399–408.CrossRefGoogle Scholar
  6. 6.
    Annabi, N., Mithieux, S. M., Camci-Unal, G., Dokmeci, M. R., Weiss, A. S., & Khademhosseini, A. (2013). Elastomeric recombinant protein-based biomaterials. Biochemical Engineering Journal, 77, 110–118.CrossRefGoogle Scholar
  7. 7.
    Hong, Y., Zhu, X., Wang, P., Fu, H., Deng, C., Cui, L., Wang, Q., & Fan, X. (2016). Tyrosinase-mediated construction of a silk fibroin/elastin nanofiber bioscaffold. Applied Biochemistry and Biotechnology, 178(7), 1363–1376.CrossRefGoogle Scholar
  8. 8.
    Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4-5), 207–233.CrossRefGoogle Scholar
  9. 9.
    Bagherifard, S., Tamayol, A., Mostafalu, P., Akbari, M., Comotto, M., Annabi, N., Ghaderi, M., Sonkusale, S., Dokmeci, M. R., & Khademhosseini, A. (2016). Dermal patch with integrated flexible heater for on demand drug delivery. Advanced Healthcare Materials, 5(1), 175–184.CrossRefGoogle Scholar
  10. 10.
    Najafabadi, A. H., Abdouss, M., & Faghihi, S. (2014). Journal of Nanoparticle Research, 16, 1–14.CrossRefGoogle Scholar
  11. 11.
    Balakrishnan, B., Mohanty, M., Fernandez, A. C., Mohanan, P. V., & Jayakrishnan, A. (2006). Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 27(8), 1355–1361.CrossRefGoogle Scholar
  12. 12.
    Cahú, T. B., Silva, R. A., Silva, R. P. F., Silva, M. M., Arruda, I. R. S., & Silva, J. F. (2017). Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZnO for wound healing. Applied Biochemistry and Biotechnology, 183(3), 765–777.CrossRefGoogle Scholar
  13. 13.
    Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. Macromolecular Bioscience, 13(4), 395–421.CrossRefGoogle Scholar
  14. 14.
    Bačáková, L., Novotná, K., & Pařízek, M. (2014). Physiological Research, 63, S29–S47.Google Scholar
  15. 15.
    Kharaziha, M., Nikkhah, M., Shin, S. R., Annabi, N., Masoumi, N., Gaharwar, A. K., Camci-Unal, G., & Khademhosseini, A. (2013). PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 34(27), 6355–6366.CrossRefGoogle Scholar
  16. 16.
    Venugopal, J., & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnology. Applied Biochemistry and Biotechnology, 125(3), 147–158.CrossRefGoogle Scholar
  17. 17.
    Neisiany, R. E., Khorasani, S. N., Naeimirad, M., Lee, J. K. Y., & Ramakrishna, S. (2017). Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers. Macromol. Materials Engineering, 302, 551.Google Scholar
  18. 18.
    Neisiany, R. E., Khorasani, S. N., Lee, J. K. Y., Naeimirad, M., & Ramakrishna, S. (2018). Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theoretical and Applied Fracture Mechanics, 95, 242–247.CrossRefGoogle Scholar
  19. 19.
    Rnjak-Kovacina, J., Li, S. W. Z., Maitz, P. K. M., Young, C. J., Wang, Y., & Weiss, A. S. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32(28), 6729–6736.CrossRefGoogle Scholar
  20. 20.
    Rnjak-Kovacina, J., & Weiss, A. S. (2011). Increasing the pore size of electrospun scaffolds. Tissue Engineering. Part B, Reviews, 17(5), 365–372.CrossRefGoogle Scholar
  21. 21.
    Vallejos, M. E., Peresin, M. S., & Rojas, O. J. (2012). All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. Journal of Polymers and the Environment, 20(4), 1075–1083.CrossRefGoogle Scholar
  22. 22.
    Nguyen, T. H., & Lee, B. T. (2010). Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. Journal of Biomedical Science and Engineering, 3(12), 1117–1124.CrossRefGoogle Scholar
  23. 23.
    Vatankhah, E., Prabhakaran, M. P., Jin, G., Ghasemi Mobarakeh, L., & Ramakrishna, S. (2013). Journal of Biomaterials Applications, 28, 909–921.CrossRefGoogle Scholar
  24. 24.
    Wang, H. M., Chou, Y. T., Wen, Z. H., Wang, Z. R., Chen, C. H., & Ho, M. L. (2013). PLoS One, 8, 56330.CrossRefGoogle Scholar
  25. 25.
    Mohammadzadehmoghadam, S., Dong, Y., & Davies, I. J. (2016). Modeling electrospun nanofibers: an overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 901–915.CrossRefGoogle Scholar
  26. 26.
    Wilkes, G. L., Brown, I. A., & Wildnauer, R. H. (1973). The biomechanical properties of skin. Critical Reviews in Bioengineering, 4, 453–495.Google Scholar
  27. 27.
    Nivison-Smith, L., Rnjak, J., & Weiss, A. S. (2010). Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia, 6(2), 354–359.CrossRefGoogle Scholar
  28. 28.
    Grover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74.CrossRefGoogle Scholar
  29. 29.
    Vaquette, C., & Cooper-White, J. J. (2011). Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomaterialia, 7(6), 2544–2557.CrossRefGoogle Scholar
  30. 30.
    Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii Alergologii, 30(5), 302–306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Oral and Maxillofacial Pathology, School of Dentistry and Torabinejad Dental Research CenterIsfahan University of Medical SciencesIsfahanIran
  4. 4.Department of Anatomical Sciences, Medical SchoolIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations